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ABSTRACT 

The emerging study of integrating information theory and control systems theory has at­

tracted considerable attention by researchers, mainly motivated by the problems of control 

under communication constraints, feedback communication, and networked systems. Since in 

most problems, estimation interacts with communication and control in various ways and can­

not be studied isolatedly, it is natural to investigate systems from the perspective of unifying 

communication, estimation, and control. 

This thesis is the first work to advocate such a perspective. To make matters concrete, 

we focus on communication systems over Gaussian channels with feedback. For some of these 

channels, their fundamental limits for communication have been studied using information 

theoretic methods and control-oriented methods but remain open after several decades of 

research. In this thesis, we address the problems of identifying and achieving the fundamental 

limits for these Gaussian channels with feedback by applying the unifying perspective. 

We establish a general equivalence among feedback communication, estimation, and feed­

back stabilization over the same Gaussian channels. As a consequence, we see that the infor­

mation transmission (communication), information processing (estimation), and information 

utilization (control), seemingly different and usually separately treated, are in fact three sides 

of the same entity. We then reveal that the fundamental limitations in feedback communica­

tion, estimation, and control coincide: The achievable communication rates in the feedback 

communication problems can be alternatively given by the decay rates of the Cramer-Rao 

bounds (CRB) in the associated estimation problems or by the Bode sensitivity integrals in 

the associated control problems. Utilizing the general equivalence, we design optimal feed­

back communication schemes based on the celebrated Kalman filtering algorithm; these are 

the first deterministic, optimal feedback communication schemes for these channels (except for 

the degenerated AWGN case). These schemes also extend the Schalkwijk-Kailath (SK) coding 

scheme and inherit its useful features, such as reduced coding complexity and improved perfor­
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mance. Though for different types of channels, these generalizations are along different lines, 

they all admit a common interpretation in terms of Kalman filtering of appropriate forms. 

Thus, we consider that Kalman filtering, the estimation side, acts like the unifier for various 

problems. 

In addition, we show the optimality of the Kalman filtering in the sense of information 

transmission, a supplement to the optimality of Kalman filtering in the sense of information 

processing proposed by Mitter and Newton. We also obtain a new formula connecting the 

mutual information in the feedback communication system and the minimum mean-squared 

error (MMSE) in the associated estimation problem, a supplement to a fundamental relation 

between mutual information and MMSE proposed by Guo, Shamai, and Verdu. 

To summarize, this thesis demonstrates that the new perspective plays a significant role in 

gaining new insights and new results in studying Gaussian feedback communication problems. 

We anticipate that the perspective and the approaches developed in this thesis could be ex­

tended to more general scenarios and helpful in building a theoretically and practically sound 

paradigm that unifies information, estimation, and control. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and motivation 

The rapid growth of communication networks opens up new scenarios and possibilities of 

applications of communication systems in feedback loops and of feedback in communication 

systems. Examples of practical significance of control over networks include multiple vehicle 

coordination, air-traffic control, and Micro-Electro-Mechanical Systems (MEMS). In these ap­

plications, the control performance is fundamentally limited by the underlying communication 

networks. The traditional approach of separating the control and the communication problems 

is inefficient, since it leads either to low utilization of the channels or to control performance 

degradation due to unnecessary extra coding and decoding delays. Moreover, channels in 

feedback loops allow us to take advantage of feedback from the decoders to the encoders to 

drastically reduce the coding complexity and to improve the communication performance. 

These considerations have motivated the study of integrated communication and control. 

This study has two main areas of research. The first focuses on the effect of feedback in 

communication systems. The simplest case consists of one feedforward channel with a noiseless 

feedback link from the decoder to encoder, whose study dated back to Shannon [109] and were 

extensively addressed in [107, 106, 110, 17] and references in the subsequent chapter. 

The second considers how the presence of communication channels in the loops affects the 

control performance and looks for characterizing the requirements imposed on the communica­

tion system by the desired performance objective. A great deal of fundamental understanding, 

highlighted next, has been drawn from characterizing the minimum transmission rate necessary 

for stabilization for different channel models [132, 133, 4, 113, 87, 32]; very recently however 

there has been a flurry of papers addressing control performance mostly in the linear quadratic 

Gaussian (LQG) settings [119, 78, 76]. The channel model is often assumed to be noiseless 

and without delay but with fixed rate. Due to its simplicity and its strictly positive zero-error 
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capacity, this model eliminates both the need for channel coding and the tradeoff between 

communication delays and probability of error. This facilitates the analysis of the effect due 

to finite rate communication and leads to interesting results. 

When one considers channels which are not error free, like the binary erasure, binary sym­

metric, and Gaussian channels, the feedback systems become stochastic systems, and the main 

finding is that different notions of stochastic stability require different notions of reliable deliv­

ery of information through the loop [102, 104]. While the Shannon notion is still appropriate 

for the "almost sure" stability of the closed loop [117], it is no longer adequate to capture the 

moment stability [102, 104]. The moment stability requires the anytime capacity, a notion of 

reliable communication stronger than Shannon's notion but weaker than the zero-error one. An 

important and often overlooked consequence is that while two channels with the same Shan­

non capacity are equivalent and interchangeable from an information transmission viewpoint, 

they are not equivalent when used in feedback loops, in the sense that the may not stabilize 

the moments of the same plants. Unfortunately a mutual information like characterization of 

anytime capacity is not yet known. 

[28] bridges the gap between the two main areas of research by investigating the Gaussian 

channels in loops. Feedback control and feedback communication over Gaussian channels were 

shown to be equivalent, and control-oriented approach to study feedback communication was 

developed. Since the anytime limitations do not arise in Gaussian channels, the analysis is 

facilitated since it can rely on the classical information theory concepts of Shannon capacity 

and mutual information (or directed information in feedback settings, as shown in [113]). 

Despite the important progresses shown above and summarized in Chapter 2 in more 

details, the effect of feedback in communication systems is not completely characterized for 

most of the channels, including the least limiting case of Gaussian channels. Other than 

the degenerated case of additive white Gaussian noise (AWGN) channel with feedback, a 

communication scheme that optimally utilizes the feedback is not available to any single-input 

single-output (SISO) Gaussian channels with feedback. 

Hence, in this thesis, our efforts will be concentrated on the benchmark problems of iden­

tifying and achieving the fundamental limits (i.e. the Shannon capacity) for several types of 

Gaussian channels with feedback. 
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1.1.1 Approach 

The approach that we will apply is mainly an extension of the control-oriented approach 

proposed in [28], and it completes the existing picture of communication and control with 

estimation. Estimation interacts with information theory or control theory in various ways and 

cannot be studied isolatedly. Hence, it is natural to study the feedback communication problem 

from the unifying perspective encompassing communication, estimation, and control. Note 

that however, current focuses in many researches of channels in loop are the interplay between 

communication and control; though estimation is sometimes employed in those researches, its 

significance has not been completely realized. This thesis is the first work to propose the 

unifying perspective and to uncover its significance. We remark that this perspective may 

eventually lead to a paradigm synthesizing communication, estimation, and control, which can 

be used to address many problems of channels in loops. 

More specifically, we will proceed as follows. First, we identify the connections of feedback 

communication, estimation, and feedback control for Gaussian channels, and second, we utilize 

such connections to address the optimality and fundamental limitations for the feedback com­

munication problems. This approach is shown to be rather powerful in solving the benchmark 

problems, and the main findings are listed in the next section. 

1.2 Main results 

The main results are stated informally as follows. 

Result 1 (General equivalence among feedback communication, estimation, and control). 

There is a general equivalence among a feedback communication system over a Gaussian chan­

nel, an estimation system (i.e. a Kalman filtering system) over the same channel, and a control 

system (i.e. a minimum-energy control (MEC) system) over the same channel. 

As a consequence, we see that the information transmission (communication), information 

processing (estimation), and information utilization (control), seemingly different and usually 

separately treated, are in fact three sides of the same entity. 

This result is an extension of those linking feedback communication and feedback control 

given by Sahai and Mitter [102, 104] and Elia [28]. Here the SISO Gaussian channels include: 1) 

AWGN channels with feedback, 2) frequency-selective fading Gaussian channels with feedback, 
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where the fading is modeled as a finite-dimensional system, 1 3) time-selective fading Gaussian 

channels with feedback and channel state information (CSI), and 4) "writing on dirty paper"-

(WDP-) Gaussian channels with feedback and with frequency-selective fading. The precise 

meaning of the equivalence will be discussed in latter chapters. The feedback used in the 

communication systems are assumed to be noiseless, a typical and ideal assumption for feedback 

communication with limitation pointed out in Section 2.2.5. 

Since the three types of systems are equivalent, it holds that their fundamental limitations 

are essentially the same. Note that in the feedback communication system, the fundamental 

limitation is the achievable rate: There exists a critical value for the signalling rate, above 

which reliable communication is not achievable and below which reliable communication is 

achievable. In the (recursive) estimation system, the fundamental limitation is the decay rate 

of Cramer-Rao bounds (CRB): Whatever estimator one may design, the decay rate of mean-

squared error (MSE) cannot be made larger than the decay rate of CRB. In the control system, 

the fundamental limitation is the Bode sensitivity integral: No matter how one designs the 

controller, the sensitivity integral cannot be made smaller than a constant determined by how 

unstable the plant is. Our result states 

Result 2 (Agreement of fundamental limitations). The fundamental limitations in the three 

systems agree. That is, the achievable rate in the feedback communication system equals half 

of the decay rate of CRB in the estimation system, and equals the Bode sensitivity integral in 

the control system. 

This result is an extension of the agreement of fundamental limitations between feedback 

communication and feedback control given by Elia [28]. The obtained relation between the 

achievable rate and CRB can be translated into the relation between mutual information and 

minimum MSE (MMSE), which is a supplement to that obtained by Guo, Shamai, and Verdu 

in [51]. In loose terms, [51] says that the increasing rate of mutual information w.r.t. the 

channel parameter SNR is equal to half of the MMSE, whereas here it says that the increasing 

rate of mutual information w.r.t. time is equal to half of the decreasing rate of the MMSE. 

Connections between these two results are under current investigation. 

1By Gaussian channels with memory, researchers normally mean the SISO frequency-selective Gaussian 
channels, although time-selective Gaussian channels may also have memory; see Section 4.2 for precise definition. 
These channels are sometimes also referred to as general Gaussian channels (in contrast to the AWGN channels), 
or even simply as Gaussian channels. 
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The equivalence given in Result 1 also helps us to construct the optimal feedback commu­

nication schemes. 

Result 3 (Optimal feedback communication schemes). The optimality in the three systems 

coincides, based on which optimal feedback communication schemes can be constructed. The 

structures of the optimal schemes are given by a simple transform of the Kalman filtering 

systems, and the parameters of the optimal schemes are given by closed-form expressions or by 

the solutions to finite-dimensional optimization problems. 

The proposed optimal communication schemes are the first deterministic, optimal commu­

nication schemes for these Gaussian channels with feedback (except for the AWGN case). We 

note that, in our optimal feedback communication schemes, the encoding can be seen as a 

control problem, and the decoding can be seen as an estimation problem, confirming the claim 

by Mitter [81]. 

The presence of Kalman filtering in the optimal feedback communication schemes leads to 

the information theoretic interpretation of Kalman filtering. 

Result 4 (Information theoretic characterization of Kalman filtering). The Kalman filtering 

for an unstable process driven by its initial condition, when put in an appropriate form, is 

optimal in information transmission. The one-step prediction operation in Kalman filtering 

leads to minimization of the channel input power, and the smoothing operation in Kalman 

filtering leads to optimal recovery of the transmitted message. 

Another way of saying this is that the optimal feedback communication systems have to 

implement the Kalman filtering algorithm. The optimality of Kalman filtering in the sense of 

information transmission is a complement to the existing characterization that Kalman filter 

is optimal in the sense of information processing established by Mitter and Newton in [83]. 

Note that in [83], a Kalman filter for a stable process was studied, whereas here a Kalman filter 

for an unstable process is studied. This result also completely characterizes the role of Kalman 

filtering in feedback communication systems, a step further than Yang, Kavcic, and Tatikonda, 

who identified only the role of Kalman filter as a sufficient statistics generator [136]. It is also 

interesting to notice that, though the optimal coding schemes are along different directions 

for different classes of channels, all these schemes can be universally interpreted in terms of 
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Kalman filtering of appropriate forms. Thus, we consider that Kalman filtering acts as a 

"unifier" for communication schemes over various channels. 

To summarize, we develop a new perspective of unifying information, estimation, and con­

trol for the study of Gaussian channels with feedback. The introduction of the new ingredient, 

namely estimation, plays an important part and provides new insights and new results to the 

study of feedback communication problems, estimation problems, and control problems. 

1.3 Thesis outline 

We provide an outline and a summary of contributions for each chapter as follows. 

Chapter 1 In this chapter we introduce briefly the motivation of the perspective that unifies 

communication, estimation, and control; identify the problem we wish to address and 

describe the main results; and outline the thesis. 

Chapter 2 In this chapter we review the relevant literature, mainly including the study of 

control under communication constraints and the study of feedback information theory. 

Chapter 3 In this chapter we study the AWGN channels with feedback. We present a simple 

motivating observation of the Kalman filtering problem; obtain a Kalman filter based 

optimal coding scheme; establish the equivalence of information, estimation, and control 

over this channel; and prove that the fundamental limitations in information, estimation, 

and control coincide. 

The main contribution in this chapter is that, we provide new insights to a problem that 

has been extensively studied in the past forty years, and the new insight gives us new 

results, i.e. Results 1-4, stated for AWGN channels with feedback. None of these results 

has been found before. These new insights say that the optimal coding scheme can be 

obtained from the Kalman filtering system, and the joint study of the feedback coding 

problem, Kalman filtering problem, and control problem is useful. 

We also show that the celebrated Schalkwijk-Kailath (SK) coding scheme is nothing but 

a simple transform of Kalman filtering, an interesting connection that has never been 

identified before. Besides, we rediscover the coding scheme studied by Gallager [43], 
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which, unlike other popular coding schemes, is numerically stable but has received little 

attention in the literature. 

Chapter 4 In this chapter we study the frequency-selective Gaussian channels with feedback. 

We start from finite-horizon analysis. We transform the renowned Cover-Pombra (CP) 

coding structure (cf. [17]) into a new form, from which we conclude that it has to 

include a Kalman filter in order to minimize the channel input power. We next rewrite 

the Kalman filter based coding structure as an estimation system and a control system, 

and rewrite mutual information in terms of estimation system quantities and control 

system quantities. We then show that this coding structure in finite-horizon reaches a 

steady-state as the horizon length increases, and hence the (asymptotic) information rate 

for the communication system can be represented as half of the decay rate of CRB for 

the associated estimation system and as the Bode sensitivity integral of the associated 

control system. Finally, we show that the limiting steady-state feedback communication 

system of finite-dimension can achieve the feedback capacity, and the construction of the 

optimal system amounts to solving a finite-dimensional optimization problem. 

In this chapter, we obtain Results 1 - 4 for frequency-selective fading Gaussian channels 

with feedback. The obtained optimal coding scheme based on the celebrated Kalman 

filtering algorithm is the first solution to such channels, after tens of years of search. 

Compared with existing results in the literature, our coding scheme is a refinement and 

extension of the CP coding structure, that is, we show that the CP coding structure 

essentially contains a Kalman filter; it is an extension of the SK codes and inherits their 

nice properties of reduced coding complexity and improved performance; and it is also a 

simplification of the optimal signalling strategy proposed by Yang, Kavcic, and Tatikonda 

[136]. For the first time, all the major research directions for Gaussian channels with 

memory are shown to be connected (through Kalman filtering), including the SK codes 

and their extensions, the CP structures and their extensions, the control-oriented schemes 

studied by Tatikonda, Mitter, Sahai, Elia, Yang, and Kavcic. 

Chapter 5 In this chapter we study the time-selective fading Gaussian channels with CSI 

and output feedback. We present a feedback communication structure, motivated by an 

estimation problem or a control problem; specify the parameters for this structure, using 
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closed-form expressions in terms of known channel parameters and the optimal power 

allocation functions; and prove that this structure with these parameters achieves the 

feedback capacity and doubly exponential decay of probability of error. 

One of our contributions is that, the proposed coding scheme was the first capacity-

achieving coding scheme over any SISO Gaussian channel (other than the AWGN case) 

in the literature [74], dated even earlier than the schemes proposed in Chapters 4 and 

6. It extends the SK coding scheme for an AWGN channel with feedback along another 

important direction, namely to adapt to the channel variations. Though the channel 

variations in general lead to difficulties due to the anytime limitation, assuming the 

knowledge about the channel variations and adapting to them eliminate the anytime 

limitation in our case. However, due to the delay in the feedback, the multiplexing 

strategy used in feedforward communication (which is an adaptive strategy) does not 

apply to the feedback case directly, and we develop the technique of state augmentation 

to resolve this issue, motivated by the study of the associated control system. Hence, 

our scheme may be viewed as a non-trivial combination of the SK coding scheme for 

an AWGN channel with feedback and the feedforward multiplexing coding scheme for a 

fading channel [47]. These two techniques, namely adaptation and state augmentation, 

leads to the optimality of the proposed coding scheme, and may be the key techniques 

to study any feedback channels with known time-variations and delays. We show that 

the control theoretic equivalence of the optimal coding scheme is a Markov jump linear 

system, which has significant theoretic and practical values and has been a focus in 

systems and control community; see e.g. [15]. This connection may be useful for studying 

other fading channels with feedback. 

Chapter 6 In this chapter we study the WDP-channels with feedback, which we call writing 

on dirty paper with feedback. In such a setting, there is an interference sequence known 

to the encoder non-causally but unknown to the decoder. We construct coding schemes 

to achieve the feedback capacity of AWGN WDP-channels and Gaussian WDP-channels 

with memory, in which the interference is canceled without incurring any rate loss or extra 

power overhead, in other words, we achieve lossless interference cancelation for these 

channels. We also demonstrate close connections among communication, estimation, 

and control. 
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This is the first study of the WDP problem with feedback, and it demonstrates how 

feedback can be helpful in WDP problems: Feedback still has the power of greatly 

reducing coding complexity and coding delay in WDP settings. We show that the optimal 

dirty paper coding scheme involves a Kalman filtering problem in which there is a process 

noise known to both the process and the estimator. We develop useful techniques to cope 

with the presence of interference, and the techniques may be readily applied to more 

general WDP problems. Since the dirty paper coding study has been considered to be a 

basic building block in both single-user and multiuser communication problems [38], we 

envision that our study on the feedback case generates a new avenue for studying many 

feedback communication problems. 

Chapter 7 In this chapter we conclude the thesis and present some interesting directions that 

will be the subjects of our future research work. 

Notations: We represent time indices by subscripts, such as %. We denote by yT the 

collection {yo,yi, •••, yr} 2, and {yt} the sequence {ytj^Lo- We assume that the starting 

time of all processes is 0, consistent with the convention in dynamical systems but different 

from the information theory literature. We use h(x) for the differential entropy of the random 

variable x. For a random vector yT, we denote its covariance matrix as KyT\ For a stationary 

process {yt}, we denote its power spectrum as 5y(e:,27rS), and its entropy rate as h(y). We 

denote Txy(z) as the transfer function from x to y. We denote "defined to be" as We 

use (A, B, C, D) to represent the finite-dimensional linear time-invariant (FDLTI) system 

| xt+i = Axt + But ^ ^ 

| yt ~ Cxt -h Dut-

In the following chapters, by feedback in a communication system, we mean the output 

feedback, namely the feedback of the channel outputs or the feedback of some functions of 

the channel outputs, unless otherwise specified. 

2The notation yT should not be confused with the Tth power of y. The meaning of the superscript notation 
is clear from the context: yT is the Tth power of y if y is a scalar, and yr denotes a vector if a scalar y is not 
defined but a collection of scalars yo, yi,—, yr is defined. 
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CHAPTER 2. LITERATURE REVIEW FOR THE JOINT STUDY OF 

INFORMATION, ESTIMATION, AND CONTROL 

In this chapter, we review the existing literature. Due to the rapid growth of the literature, 

we feel that a survey of results scattered in the literature is necessary and useful. Due to 

the same reason, our review is by no means complete or comprehensive. In Section 2.1, we 

review control with limited information. In Section 2.2, we review feedback information theory. 

We remark that these two are sometimes not differentiate. Some other relevant literature is 

included in Section 2.3. 

2.1 Literature review for control with limited information 

Control with limited information has two important features, among others. One is that 

information needs to be quantized to allow digital communication and processing, the other 

is that information has to go through channels with uncertainties (e.g. noise, fading, shadow­

ing, etc.). We describe briefly the quantized control systems and control over channels with 

uncertainties below. 

2.1.1 Quantized control systems 

In control systems with digital communication channels, the effect of information quan­

tization is taken into consideration in control systems design, resulting in quantized control 

systems. In contrast to a conventional control system which assumes that information is trans­

mitted and processed without any cost or limitation, for a quantized control system, the cost 

or the limitation of information transmission/processing are explicitly considered as follows. 

The measurements of the plant and/or control inputs have to go through finite-capacity dig-

italized communication channels and hence are quantized to finite precision; in addition, in 

many situations, these signals are transmitted and processed only intermittently (namely, they 
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are transmitted and processed only if a change occurs). Therefore, quantized controller usually 

generates piecewise constant control inputs and are event-driven systems. 

Delchamps showed that the closed-loop behavior resulting from quantization of measure­

ments is quite different (and much more complicated) than that resulting from approximation 

of measurements [19]. In [3] Brockett proposed the minimum attention control which uses 

piecewise constant control and takes into account of the "attention cost" measuring the over­

head for information transmitting and processing. In [132, 133] Wong and Brockett addressed 

the problems of state estimation and feedback stabilization with finite bandwidth communi­

cation constraints. In [1] Borkar and Mitter introduced communication constraints to linear 

quadratic Gaussian (LQG) control problems. Nair and Evans studied state estimation via a 

capacity-limited communication channel [86]. These original papers have motivated a lot of 

research work; see for example [4, 70, 32, 25, 39, 55, 42, 69, 77, 87, 22, 72, 118, 117, 119, 88]. 

Coarser quantization implies that less information flows between the controller and the 

plant. Therefore, the minimum quantization density that stabilizes an unstable plant is of 

interest: It can be used to measure the minimum information needed for stabilization, and it 

codifies how difficult a system can be controlled. In [32] Elia and Mitter devised the quantizer 

with minimum density for stabilizing a discrete-time linear time-invariant (LTI) single-input 

plant that is open-loop unstable. The quantizer design was shown to be an MEC problem, and 

the minimum density p is 

'=§7TT' 

depending only on the degree of instability 

m 

di  :=niA«,i|, (2.2) 
i=i 

where Au,i are the unstable poles of the system. This implies that if the plant is more unstable, 

then more information is needed for accomplishing the stabilization task. Later, the minimum-

density quantizer design was obtained for multi-input plants [25], for nonlinear plants [71, 72], 

and for control with performance requirements [24]. 

Another measure of how much information is needed for stabilization is the minimum bit-

rate between the stabilizing quantized controller and the unstable plant. Tatikonda [113] and 

Nair and Evans [87] provided the minimum bit-rate for stabilizing an unstable linear plant. 
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Like the previous case, the minimum bit-rate r  depends only on the degree of instability, 

namely 

r  = log di .  (2.3) 

Similar results hold for state estimation. Since the bit-rate is directly linked to mutual informa­

tion and entropy, one may attempt to link this result to the (generalized Kolmogorov) entropy 

generated by the plant. Nair et al showed that such an unstable plant generates entropy at a 

rate equal to log di, and hence apparently a channel which can sustain communication rate 

of at least log di is needed [88]. 

Information quantization makes a dynamical systems hybrid in many cases. Such a hy­

brid nature may cause technical difficulties (such as the discontinuity in the vector fields 

for continuous-time dynamical systems, see e.g. [4, 71]). Despite of this, sometimes peo­

ple intensionally introduce information quantization to a system to reduce the communica­

tion /computation costs and to address the design problems of hybrid systems or hierarchic 

systems; see [3, 77, 24, 32, 23, 71]. To summarize, quantized control systems become an 

interesting device that integrates dynamical systems and control, information theory and com­

munication, and hybrid systems. 

2.1.2 Control over probabilistic channels 

The above research generally assumes that the channel is digital but noiseless (i.e. deter­

ministic). This noiseless assumption holds true if the channel has a capacity higher than the 

bit-rate, thanks to the channel coding theorem (though the delay issue needs to be taken care 

of). In many cases, it is necessary or useful if the noises and uncertainties of the underline 

channel are considered explicitly. For an example, the optimality for the control over an AWGN 

channel is easily achieved without quantization or coding, namely sending the un-coded control 

signal across the noisy channel is optimal [28]; see later chapters for details. This leads to the 

study of control over probabilistic channels. 

Many strategies have been developed to cope with the channel noise and fading; see e.g. [76, 

112] for two most recent publications. However, one "universal" strategy exists, as proposed 

by Elia. This strategy is to, first, extract any channel uncertainties from the deterministic 

mean system, and second, view the uncertainties as those studied in robust control [26, 27]. 

Then the stability of the original system becomes the robust stability of the mean system 
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to those uncertainties. This strategy has been applied to packet-drop networks without side 

information [26], packet-drop networks with side information but without side information 

loss [31], packet-drop networks with lossy side information [30], general memoryless fading 

channels [27], etc. In the scenario of [26], the maximum packet-drop rate that ensures the 

closed-loop stabilization can be solved analytically, which is again determined by the degree 

of instability. In other scenarios, a critical quantity resembling the structural singular value in 

robust control determines the minimum "quality of service" that the channel has to provide 

to ensure stabilization. 

For the problem of estimation over channels with uncertainties, we may also apply the 

above results by invoking the duality between control and estimation. Other work in this area 

including [111], which considered the Kalman filtering problem over an erasure channel and 

characterized the existence of the critical value of packet loss, above which the estimation error 

covariance becomes unbounded and below which the estimation error covariance is bounded. 

2.2 Literature review for feedback information theory 

Communication systems with noiseless feedback from the receivers to the transmitters 

have been studied since Shannon [109]. In [109], Shannon proved that feedback does not 

increase the capacity for a discrete memoryless channel, namely C/& = Cff, where Cjb is 

the feedback capacity and Cff is the feedforward (or forward) capacity. This result was 

somewhat surprising, since one might expect that the noiseless feedback should benefit the 

noisy feedforward communication. Such a benefit was later uncovered by Elias, Horstein, etc., 

who showed that noiseless feedback can improve the performance [33, 52]. More improvement 

was obtained later by Schalkwijk and Kailath. 

2.2.1 The Schalkwijk-Kailath (SK) codes and its extensions 

Ten years after Shannon's work, in 1966, substantial improvement was discovered by Schalk­

wijk and Kailath. While in feedforward communication, researchers were struggling to better 

address the tradeoff among lower coding complexity, better performance, and higher data 

rate, in their award-winning papers [107, 106], Schalkwijk and Kailath demonstrated that by 

utilizing noiseless feedback, a capacity-achieving coding scheme for an AWGN channel can be 

designed with low complexity and very short coding length, under an average power constraint. 
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Particularly, in [106], it was shown that the following simple signalling strategy is optimal. 

Given a set of M equally likely messages, uniformly divide the interval [0,1] into M subintervals, 

and associate each message to a subinterval center. Pick one center W and transmit it. At 

time t, the decoder computes a maximum-likelihood estimate Wt of W. At time (i + 1), the 

encoder transmit a(Wt — W), an amplified version of the estimation error, where a > 1 is 

an amplification factor. At the final time, the decoder maps its final estimate to the closest 

subinterval center as the decoded message. This coding procedure is rather simple, and it leads 

to doubly exponentially decay of the decoding error probability, while achieving the capacity. 

The SK codes have been extended to many situations. Gallager reformulated the coding 

scheme and discussed both the digital and analog (related to rate-distortion and joint source-

channel coding) transmission issues [43]. Schalkwijk designed the multi-dimensional signalling 

for AWGN channels [105]. Omura formulated a stochastic optimal control problem for the SK 

signalling strategy [92]. Wyner showed that the SK codes generate (singly) exponential decay 

of error probability if a peak power constraint is used. Butman designed the feedback codes 

for channels with additive Gaussian noise forming autoregressive processes, and derived tight 

bound for feedback capacity [5, 6]. More general Gaussian noise channels were also studied, see 

e.g. [122, 131, 97, 96]. For multi-input multi-output (MIMO) Gaussian channels with feedback 

(i.e. Gaussian networks with feedback), see e.g. [95, 68, 64]. 

2.2.2 Computation of feedback capacity and bounds 

For discrete memoryless channels and AWGN channels, the feedback capacity equals the 

feedforward capacity. Dobrushin first showed that channels with memory can have feedback 

capacity strictly greater than feedforward capacity [21]. Whether there is an improvement or 

not for a discrete-time additive Gaussian channel with feedback was completely characterized 

by Yanagi: When the noise is white, C/& = Cff, when the noise is blockwise white (independent 

b e t w e e n  b l o c k s ) ,  C f t ,  =  C f f  i f  t h e  p o w e r  b u d g e t  i s  b e l o w  s o m e  c r i t i c a l  v a l u e  a n d  C / j ,  >  C f f  

otherwise; when the noise is completely colored, C/& > Cff [135]. On the other side, for a 

colored Gaussian channel, it was pointed out by Pinsker that feedback can at most double 

the capacity [16], and by Cover and Pombra that feedback can at most improve the capacity 

by half a bit [17]. Dembo also showed that feedback does not improve capacity for colored 

Gaussian channels in very high SNR and very low SNR regimes [20]. Numerous upper bounds 
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and lower bounds for Gaussian channels with memory have been obtained in the past decades; 

see [62] for a recent summary. For Gaussian networks without memory, increase of capacity 

due to feedback is possible and can be fairly high [95, 68, 53, 54, 63, 64, 65]. 

Despite of the above progresses, the feedback communication problems were found very 

challenging: The feedback capacity of any Gaussian channel with memory (other than the 

degenerated case of AWGN channels) could not be computed. As a result, the optimality of 

the above generalized SK codes for Gaussian channels with memory could not be established. 

Most of the feedback communication problems remained largely open until very recently, new 

developments have been obtained mainly based on the unifying perspective of information and 

control. 

2.2.3 Most recent achievements: The interactions with control theory 

Researchers had paid little attention on viewing the feedback communication system as a 

control system (with the notable exception of Omura [92]), but this recently (re-)developed 

viewpoint has been shown extremely powerful in addressing many long-standing problems in 

feedback communication. 

In [113, 116], Tatikonda and Mitter proposed a unified view of control and information. 

They thoroughly studied feedback communication systems and the feedback capacity for both 

discrete and continuous channels. They viewed the feedback communication systems as inter­

connections of stochastic kernels, which extends Dobrushin's view of communication systems 

and Willems' view of feedback control systems [21, 99]. They proved that the supremum of 

directed information rate from the channel input to channel output (subject to the power 

constraint, if any) is the feedback capacity, which is the first input-output characterization of 

feedback capacity. The directed information rate is defined as 

~T(u^y )  :=  lim —-~f (uT -»• yT) := lim —(2-4) 
T—»oo 1 4* I T—>oo I -f- 1 A' t=0 

provided the limit exists, where u4 := [UQ, iti, • • •, ut]' is the stacked input, and yt is the stacked 

output. This differs from the conventional mutual information rate 

1 i T 

I(u-y)  :=^mo^q-^/(ur;yT) := ^lim^ I(uT\yt|yt_1) (2.5) 
t=o 
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in that the causal dependence (different from the statistical dependence) of the channel input 

ut on channel output yl~l is considered in (2.4). Note that ~f \u —» y) is indeed "directed" 

since ~î(u —> y) ^ {y —»• u) in general. Note also that earlier Massey argued that the 

supremum of (2.5) does not give us the feedback capacity, and the supremum of (2.4) is an upper 

bound of the feedback capacity [79]. Tatikonda and Mitter also reformulated the feedback 

capacity problem as a stochastic control problem, and developed a dynamical programming 

based solution to compute the finite-horizon feedback capacity (though it still involves rather 

high computation complexity). To better address the time-delay issue and the feedback issue in 

many communication problems, they proposed the sequential rate distortion theory, motivated 

in part by control of unstable systems over communication channels (mainly over noiseless 

digital channels and AWGN channels). This theory tells us how much channel capacity is 

needed to transmit a process, e.g. a video stream, across a channel with specified distortion. It 

was shown that both the conventional rate-distortion problems and the successive refinement 

problems [35], including the SK coding scheme for transmitting analog sources, are special 

cases of this theory. 

In [102, 104], Sahai and Mitter observed that to communicate over general noisy channels 

delay-sensitive information streams, including non-stationary, non-ergodic sources or even un­

stable sources, the Shannon capacity becomes inadequate. For instance, if the source to be 

transmitted over a noisy channel grows exponentially and is known to the transmitter causally, 

Shannon capacity c of the channel may not be achievable. This is because whenever a code 

with rate close to c generates an arbitrarily small but nonzero probability of error (which is 

for sure due to the channel noise), this error cannot be corrected and will causes an unbounded 

error at the decoder side in later steps. However, the zero-error capacity is too conservative. 

A fundamental new theory, called the anytime information theory, was proposed to address 

these communication problems. This theory is closely linked to control problems, such as the 

problem of tracking unstable sources over noisy channels. In particular, Sahai and Mitter 

demonstrated that moment stabilization (or asymptotic tracking with bounded moments) over 

noisy channels is equivalent to reliable communication of streams over the same channels. The 

fundamental limitations in those communication problems are characterized by anytime ca­

pacity, above which reliable communication of delay-sensitive information streams is possible 

and below which reliable communication is impossible. In fact, for any rate below the anytime 
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capacity, any error made in previous steps can be eventually corrected. Anytime capacity, 

corresponding to moment stability of the associated control system, is usually stronger than 

the Shannon capacity, corresponding to almost sure stability of the associated control system, 

but it is (much) less demanding than the zero-error capacity. In the AWGN channel case, it is 

shown that 

whereas the zero-error capacity is zero! It also holds that, for Gaussian channels, moment 

stability is equivalent to almost sure stability, and hence anytime capacity equals the Shannon 

capacity. However, in other cases, the anytime capacity has not been found to have a simple 

characterization such as a mutual information type one, and it is difficult to compute in general. 

Sahai and Mitter also studied the anytime encoder, anytime decoder, joint source-channel 

coding, insufficiency of using block codes, etc. 

In [28], Elia made an intriguing observation that the celebrated SK coding scheme is merely 

a rewrite of a special LQG problem (i.e. the MEC problem with Gaussian disturbance), and 

reliable communication in the former is equivalent to stabilization in the latter. Then he 

established the general equivalence between reliable feedback communication and feedback 

stabilization over Gaussian channels with memory 1. In particular, the problem of feedback 

communication over a Gaussian channel with memory can be transformed into an MEC prob­

lem over the same channel with an open-loop unstable plant, and if the latter is stabilized in 

closed-loop, the former communicates reliably; additionally, lower bounds of the feedback ca­

pacity in the former can be obtained by solving the minimum-energy needed for stabilization 

in the latter. More precisely, the transmission rate over the channel is shown to equal the 

degree of instability of the open-loop system, namely 

C 'anytimei'P)  ~  CShannon^) — ^ l°g(l + *P)I  viannon (2.6) 

r  = log di ,  (2.7) 

and the channel input power is given by 

P = \\TZU{Z)\ \2  (2.8) 

1One of the differences between this equivalence and that shown by Sahai and Mitter is that, the unstable 
plant in [28] is driven by its initial condition, and in [102, 104] is driven by an input process. 
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where Tzu denotes the transfer function from the Gaussian noise Z to the channel input u, and 

|| • || denotes the % norm. Then lower bounds of feedback capacity can be obtained by finding 

minimum power P while maintaining the closed-loop stability and a given rate R. To solve the 

minimum power, one can apply many control techniques, such as the Youla parametrization, 

interpolation conditions, and so on. Elia demonstrated that this approach provides tighter new 

lower bounds or recover the tightest lower bounds of feedback capacity in existing information 

theory literature. He also extended the SK codes to achieve these lower bounds, and the 

coding schemes have an interpretation of tracking unstable sources over Gaussian channels. 

By investigating the fundamental limitations in the feedback communication problem and 

the control problem, Elia showed that the achievable rate is alternatively given by the Bode 

sensitivity integral 

where S(z )  is the sensitivity transfer function of the closed-loop control system. Hence, the 

fundamental limitation in feedback communication coincides with that in control. 

In [137], Yang, Kavcic, and Tatikonda applied the ideas of directed mutual information rate 

and stochastic control formulation in [113] to compute the feedback capacity for a discrete-input 

finite-state Markov channel. The optimal input distribution is also characterized. In [136], 

Yang, Kavcic, and Tatikonda used similar ideas to compute the feedback capacity of a power-

constrained Gaussian channel with memory. They uncovered the Markov property of the 

optimal input distributions for this channel and eventually reduced the finite-horizon stochastic 

control optimization problem to a manageable size. The optimal input distribution at time t 

takes the form 

where dt € Rm is a gain, St 6 Mm is the state of the channel at time t (which summarizes the 

information in previous inputs it4-1), m is the order of the channel, E(st|yt_1) represents the 

sufficient statistics for estimating st based on channel outputs yt_1 which can be computed 

using a Kalman filter, St is an independent process representing new information, and its 

variance Kstt as well as dt needs to be searched for each t. Using dynamical programming, 

a solution of computation complexity 0(T + 1) for computing the finite-horizon feedback 

capacity Ct is obtained, where (T + 1) is the length of the time horizon. Moreover, under a 

2 

(2.9) 

ut — d't{st — E(st|y4 1)) + <ft, (2.10) 
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stationarity conjecture that the infinite-horizon, capacity C/b,00 equals the stationary capacity 

(the maximum information rate over all stationary input distributions, denoted Cjb), Cfbt00 is 

given by the solution of a finite dimensional optimization problem. The stationarity conjecture 

is equivalent to assuming that dt = d and Kstt — Ks for all t. This is the first computationally 

efficient 2 method to calculate Cjb or Cfb,T for general Gaussian channels with memory. 

2.2.4 Other most recent achievements 

Most of the new achievements in feedback information theory employed the interactions 

between information and control. As an notable exception, some recent important results for 

Gaussian channels with feedback were obtained based on the Cover-Pombra coding structure 

(called the CP structure). The CP coding structure is a simple linear structure that generates 

the optimal channel inputs for general Gaussian channels with feedback [17]. Though the 

structure is rather simple, the number of free parameters to be searched grows fast as the 

coding length increases and leads to prohibitive computation complexity. By exploiting the 

special properties of a moving-average Gaussian channel with feedback, Ordentlich discovered 

the finite rankness of the innovations in the CP structure, which reduces the computation 

complexity [94]. Shahar-Doron and Feder reformulated the CP structure along this direction, 

and obtained an SK-based coding scheme to achieve the finite-horizon capacity with reduced 

computation complexity [108]. Also along this line, Kim studied a first-order moving-average 

Gaussian channel with feedback, found the closed-form expression for CfbtOQ, and obtained an 

SK-based coding scheme to achieve C/6,oo [60]. For this channel, the optimal input distribution 

is indeed stationary, as conjectured by Yang, Kavcic, and Tatikonda in [136]. Moreover, in 

[61], Kim confirmed the stationary conjecture for stationary Gaussian channels with feedback, 

based on a careful look at the CP structure, superadditivity of feedback capacity, and the 

relation between cyclostationary processes and stationary processes. 

2.2.5 Limitations of feedback information theory 

As we have seen, significant progresses have been made in feedback information theory, 

especially in the past five years. However, most of the results are based on the assumption 

2Here we do not mean that their optimization problem is convex. In fact the computation complexity for 
Cfb,T is 0(T + 1), and for Cfb,oa the complexity is determined mainly by the channel order, which does not 
involve prohibitive computation if the channel order is not too high. 
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that the feedback link is noiseless, and the literature lacks meaningful results on noisy feedback. 

In the noiseless feedback case, infinite amount of information can be transmitted across the 

feedback link without any cost or limitation. 

In some situations, the noiseless feedback assumption may be a good approximation. Con­

sider a communication network with base stations and mobile stations. The communication 

from the mobile station to the base station (the forward transmission) may be very noisy due 

to the limited resources (e.g. transmission power) available to the mobile station, whereas the 

communication from the base station to the mobile station (the feedback transmission) may 

be viewed as noiseless since the base station may have a lot of resources (e.g. transmission 

power). The study using noiseless feedback says that one can dramatically improve the forward 

transmission by taking advantage of the feedback transmission, which may be useful in such 

communication networks. Similar possibilities exist in satellite-ground communication [107], 

sensor networks with base stations or cluster centers [126], and so on. 

Yet, the above described situations in real practice can be much more complicated. For 

example, in practice one would try to better allocate the bandwidth resources between the 

feedforward link and the feedback link, and one usually feeds back the decision made by the 

decoder to the encoder. Additionally, the effect of feedback noise may be very small but never 

exactly zero. These issues have not been taken into consideration, mainly because they greatly 

complicate the problem (which is already very difficult) and cannot be studied at the current 

stage. 

The main usefulness of the ideal study based on noiseless feedback of full information 

about the channel outputs includes the following. First, it gives us the ultimate bound and 

useful hint of how much feedback (of any kinds) may help us. If the noiseless output feedback 

leads to substantial improvement in a communication problem in terms of either capacity or 

coding complexity or performance, it may suggest that we should try to utilize feedback in 

that problem, even if the feedback link is not perfect. Second, we consider it a necessary 

step towards the study of the more realistic cases, such as noisy feedback. Third, a feedback 

communication system with noiseless feedback may be transformed into a control system over 

one noisy channel using the equivalence shown in [28], which may help solve the associated 

control problem. Note that a control system with only one noisy channel (either from the plant 

to the controller or the opposite) is a realistic problem. 
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Thus, though the noiseless feedback assumption is not quite practical, which makes the so 

far developed feedback information theory not quite practical, we consider that this simplifying 

assumption is helpful, these studies have significant theoretic implications, and they may shed 

important insight on the study of the more practical problems. 

Throughout this thesis, we will follow this convention and assume that the channel outputs 

are fed back noiselessly to the encoder. 

2.3 Other work 

Mitter and Newton revealed the optimality of optimal estimators in the information the­

oretic sense [82, 83]. They identified the information flow in a Kalman filter, showed that 

the Kalman filter extracts the right amount of useful information from the observations for 

estimation purpose, supplies the extracted information to an information store, and dissipates 

at an optimal rate the old information that becomes no longer useful. Hence, the Kalman filter 

acts optimally in the information processing sense. 

Graham, Baliga, and Kumar observed the convergence of control, communication, and 

computation [49, 48]. They pointed out that in many applications, the three cannot be treated 

as separated: "For example, the problem of data fusion in sensor networks is not just an 

inference problem, or just a computation problem, or just a communication problem. It is 

a synthesis. When actuation is also involved, as in control, there is a further convergence of 

theories. Such a systems theory could well be the agenda for the next two decades." It is 

clear that their main scope largely overlaps with the study of interactions among information, 

estimation, and control: Though we are not yet explicitly addressing the computation aspect, 

computation is used in information transmission (e.g. coding and decoding), information 

processing (e.g. estimation), and information utilization (e.g. decision making). A complete 

picture of a typical system in both studies comprises the underlying plants, sensing, information 

transmission, information processing, decision making, another information transmission, and 

actuation. Kumar and their collaborators have made significant progresses in design and 

implementation of such systems in their Convergence Lab at the University of Illinois. 

Guo, Shamai, and Verdu obtained a new formula that connects the mutual information of 

the input and output in a Gaussian channel and the MMSE achievable by optimal estimation 
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of the input given the output [51]. In its simplest form, for a scalar AWGN channel 

y = VSNR u + N (2.11) 

with SNR being the signal-to-noise ratio (SNR), u being the channel input with arbitrary 

distribution, N being standard Gaussian independent of u, and y being the channel output, it 

holds that 

where /(SNR) is the mutual information between the input u and output y, and MMSE(SNR) 

is the MMSE of the input estimate given the output; both i (SNR) and MMSE (SNR) are 

functions of SNR. In another word, the derivative of the mutual information w.r.t. SNR 

equals half of the MMSE, independent of the input distribution. This intriguing relationship 

can be extended to various Gaussian channels and draws fundamental connections between 

information theory and estimation theory. This is closely related to one of the results linking 

mutual information and MMSE (or CRB) obtained in this thesis. 

In [78], Martins and Dahleh studied the performance of control systems with communication 

constraints. They explicitly showed that how much channel capacity is needed to achieve 

a desired performance of a control system, and characterized the fundamental limitations 

of disturbance rejection in terms of a Bode-like formula or information theoretic quantities. 

Intuitively speaking, they showed that the channel capacity should be no smaller than the 

rate used for stabilization plus the rate used for disturbance rejection. Elia considered a 

different setup of the disturbance rejection problem over Gaussian channels [29]. In this case, 

disturbance rejection by loop shaping does not require extra transmission rate but needs extra 

power, and the extra power corresponds to how far the sensitivity function is away from the 

optimal (flat) sensitivity given by loop shaping. 

In [75], Liu et al studied the collective behavior of a class of dynamical systems under 

communication constraints, and proved that different amount of information flow inside the 

system leads to rather different behavior of the system. More specifically, it was shown that, 

for a group of simple non-mobile agents operating in discrete-time, phase transition emerges 

from the interactions among agents in the presence of noise: At a noise level higher than 

some threshold, the system generates symmetric behavior; whereas at a noise level lower than 

d 
/(SNR) = ^MMSE(SNR), (2.12) 

dSNR 
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the threshold, the system exhibits spontaneous symmetry breaking. This research belongs to 

the cooperation with limited information framework, also illustrates the interaction between 

information and dynamical systems, and may help us to understand how information is being 

utilized in such systems. 

We refer to [80, 110, 121, 50, 34, 10, 130, 127, 114, 40, 91, 115, 84, 90] and references therein 

for other related work. 
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CHAPTER 3. AWGN CHANNELS WITH FEEDBACK 

In this chapter, we study the AWGN channels with feedback. Due to its simplicity, this 

channel has been extensively investigated. A capacity-achieving coding scheme was first pro­

posed by Schalkwijk and Kailath [107, 106], and variations and different interpretations have 

been given. In particular, Elia showed that the SK coding scheme is essentially an MEC 

problem [28]. Nevertheless, this channel is still interesting to us, since its simplicity helps us 

to easily identify its connections to estimation/control problems. Careful studying of these 

connections gives us new insights about feedback communication problems, and the insights 

can be extended to more general situations, as we will see in subsequent chapters. 

This chapter is organized as follows. We first present a Kalman filtering problem as a 

motivating example in Section 3.2, based on which we obtain a feedback communication scheme 

in Section 3.3. We then prove that this scheme is optimal in the sense of achieving the feedback 

capacity in Section 3.4. We draw explicit connections to an estimation problem, a tracking-of-

unstable-source problem, and a control problem; see Section 3.5. We show that the optimality 

in these problems coincides, and so do their fundamental limitations. We also illustrate that 

the SK coding scheme is essentially the Kalman filtering algorithm. In Section 3.6, to overcome 

the numerical instability problem of the proposed coding scheme, we provide a modified coding 

scheme suitable for simulation purpose and report the numerical results. 

3.1 Channel model and feedback capacity 

Consider a discrete-time AWGN channel shown in Fig. 3.1. At time t, t — 0,1, • • -, this 

channel is described as 

yt = ut + N t ,  (3.1) 

where ut is the channel input, Nt is the channel noise and forms an identically and indepen­

dently distributed (i.i.d.) Gaussian process with zero mean and unit variance, and yt is the 
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channel output. 

NT  

Ut yt 
)— • 

Figure 3.1 An AWGN channel. 

We assume that at time t, the encoder can make use of the channel output yt_1 or any 

function of it, by utilizing the noiseless feedback link. Under an average channel input power 

constraint 

lim -J—Eu t ,u t  < V (3.2) 
T—>oo T + l  K  '  

with V  > 0 being the power budget, it holds that 

^ log(l + P), (3.3) 

where C f ^iV) is the feedback capacity and C f f ( V )  is the feedforward capacity. 

3.2 Motivating observations: A simple Kalman filtering problem 

To help the reader understand the intuition behind our study, we introduce a simple exam­

ple before we go into the technical details. A large portion of this research is in fact motivated 

by the observations made in studying this example. 

Consider a standard Kalman filtering problem for a first-order unstable LTI system with 

noisy measurements: 

Xt+I — ClXf 

n  = cx t  (3.4) 

y t  = r t  + N t ,  

where xq is unknown, a > 1 (namely the system is unstable), a and c are known, and Nt is i.i.d. 

Gaussian with zero mean and unit variance. Though the process {yt} is neither stationary, 

nor even asymptotically stationary, a Kalman filter can be built to guarantee bounded error 

covariance for estimating xt, and the Kalman filter converges to a time-invariant one, as pointed 
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out in Chapter 14 of [57]. We can obtain the steady-state Kalman filter as 

^t+i — 0>%t "t" L&t 

f t  = CXt 

et = yt~ cxt, 

(3.5) 

where 

L := aSc 
(3.6) 

1 + c2E 

is called the Kalman filter gain-, E, the asymptotic error covariance for xt, is the positive 

solution to the discrete-time algebraic Riccati equation (DARE) 

E = oE 1 + C2B' 

and et is called the Kalman filter innovation or simply innovation. See Fig. 3.2. 

Kalman filter 

Nt r 
XQ I 

(3.7) 

z-1 
Xt 

C z-1 C 
n yt 

a 

et  
L 

x t+l 

n 

,-i 

a 

xt  
C -| 

Figure 3.2 A Kalman filtering problem. 

It can be easily solved that 

o 2 - l  
> 

^ (3.8) 
L — 

ac 

and hence the error covariance of estimating rt is 

P E(rt -  f t ) 2  = E(cxt — cxt)2 = c2S = a 2  — 1 ,  M 
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yielding that 

logo = -log(l + P) ,  (3.10) 

which reminds us the capacity formula for an AWGN channel with power budget P.  

Note that the Kalman filter is the optimal estimator for an estimation problem. It has 

been demonstrated by Mitter and Newton that the Kalman filter can be interpreted in an 

information theoretic sense (but not in the sense of conveying information over some channel), 

and it is indeed optimal in that sense [83]. Here we would like to ask related but different ques­

tions: Does the Kalman filtering problem admit any information transmission interpretation? 

If yes, does it correspond to the optimal communication over an AWGN channel, in light of 

(3.10)? And where are the encoder, decoder, and message? We answer these questions in the 

subsequent section. 

3.3 Kalman filter based coding scheme 

In this section, we propose a coding scheme which achieves the feedback capacity of the 

AWGN channel. This coding structure, as illustrated in Fig. 3.3, is easily seen to have only a 

slight change from the Kalman filter shown in Fig. 3.2: Instead of closing the loop after the 

AWGN Nt (i.e. adding —ft to yt), in Fig. 3.3, the loop is closed before the AWGN Nt (i.e. 

adding —ft to rt). This does not change anything but the signals between the two adders. In 

Fig. 3.3, we can identify the encoder, the AWGN channel, and the decoder, that is, we indeed 

obtain a feedback communication system from the Kalman filtering problem in Fig. 3.2. 

encoder 
AWGN 
channel 

x 
2I 
z 1 

Xt 
C z 1 C 

rt 

a rt 

ut  
Nt i 

yt  
|et 

decoder 

xt+i 
-t-i xo,t 

C -I 

a xt  

Figure 3.3 A coding structure based on Kalman filtering. 
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Remark 1. The rationale behind the optimality of this coding scheme lies in the optimality 

of the Kalman filtering problem. In Fig. 3.2, if a > 1, namely the process to be estimated is 

unstable, it holds that 

xt = atx o, (3.11) 

that is, xt and rt cxt grow exponentially. Compared to the ever growing process {rt}, 

the noise process {M} is exponentially smaller and smaller and eventually becomes negligible. 

Therefore, the Kalman filter, the MMSE estimator, can estimate XQ with higher and higher 

precision, which is a fixed point smoothing problem. In fact, let xott •— athen the 

estimation error xqj xq — £o,t decays exponentially and faster than that given by any other 

estimator, in the mean-squared sense. This corresponds to that the information about xq is 

being transmitted at the highest rate. Besides, the difference between rt and ft, the optimal 

one-step prediction of rt based on yt_1, is also minimized in the mean-squared sense, which 

implies that ut := rt — ft is minimized in the variance (namely, the power) sense. This leads 

to the optimality in the feedback communication problem. 

To see that the estimation error (XQ — xo,t) decays exponentially in the mean-squared sense, 

we may reason in an approximate way or a rigorous way. Approximately, it holds that, for t 

large enough, 

E( x t  -  x t ) 2  % S; (3.12) 

since xt = atXo and xt = atxo:t, we then have 

E(zo - %,t)2 « (3.13) 

that is, the estimation error xo,t decays exponentially at rate log a. Rigorous computation 

confirms that this is the right decay exponent of Xt, which will be presented shortly in the proof 

of Theorem 1. 

To summarize the above intuitive explanation, the Kalman filter provides the optimal esti­

mate of the message being transmitted by smoothing operations, as well as the optimal channel 

input power usage by one-step prediction operations. Combining these two factors, we can 

obtain an optimal coding scheme based on Kalman filtering. 

In the rest of this section, we describe the Kalman filter based coding scheme in detail. We 
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will prove rigorously the optimality of the coding scheme in the next section. 

3.3.1 Coding structure and optimal parameters 

The encoder and decoder shown in Fig. 3.3 are described in state-space as follows: 

encoder: (3.14) 

and 

decoder: 

xt-(-1 — QXt Lyt 

rt = cxt 

&0,t — <2 

(3.15) 

where 

a 

c 

L 

= VY+V> 1 

= 1 

= a 

(3.16) 
1 
a' 

xo :— 0, x'0,0 := 0, and XQ will be determined shortly. Recall that V > 0 is the power budget. 

It is easy to see that L is chosen according to the Kalman filter gain formula (3.8). We call xt 

the encoder state. 

Interestingly, the encoder may be viewed as a control system, and the decoder may be 

viewed as an estimation system, as pointed out by Mitter in [81]. 

3.3.2 Coding processes 

The designed communication system can transmit either an analog source or a digital 

message. We describe the coding processes for both cases below. Let us fix the coding length 

(or the time horizon) to be (T + 1), namely the time spans from time 0 to time T. 

3.3.2.1 Transmission of analog source 

In this case, we assume that the encoder wishes to convey a Gaussian random variable 

through the channel and the decoder wishes to learn the random variable, which is a rate-

distortion problem or a successive refinement problem (see [113, 102, 45] and reference therein 
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for study of successive refinement and its generalization, the sequential rate-distortion prob­

lem). 

The coding process is as follows. Assume without loss of generality that the to-be-conveyed 

message W is distributed as A/*(0, V) (if the variance is not V, we can scale W to have the 

desired variance). To encode, let 

xq := W. (3.17) 

Then run the system till instant of time T, generating xo.t for t = 0,1, • • •, T. To decode, let 

Wt xq.t- The distortion measure is 

MSEwiT := E(w -  w t  f .  (3.18) 

3.3.2.2 Transmission of digital message 

To transmit digital messages over the communication system, let us fix e > 0 arbitrarily 

small. Suppose that we wish to transmit one of a set of 

MT := (3.19) 

messages. We equally partition the interval 

—fp (l + [) , VP (i + — (3.20) 

into Mt  sub-intervals, and map the sub-interval centers to a set of Mt  equally likely messages; 

this is known to both the transmitter and receiver a priori. 

Suppose now we wish to transmit the message represented by the center W. To encode, 

define xq according to (3.17). Then run the system till instant of time T. To decode, let the 

decoder estimate Wt be 

Wr := (3.21) 

We then map Wt  into the closest sub-interval center and obtain the decoded message Wt - We 

declare an error if Wt ^ W, and call a (an asymptotic) rate 

% := H™ —L-logAfy (3.22) 
J —>00 1 + 1 
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achievable if the probability of error PEt vanishes as T tends to infinity. 

3.4 Coding theorem 

The following theorem establishes that, the above described coding scheme is optimal in the 

sense of information transmission. Therefore, we have indeed obtained optimality in feedback 

communication based on the optimality in estimation. 

Theorem 1. Let {Nt} be AWGN with Nt ~ A/*(0,1). Then under the power constraint Eu2 < 

v ,  

i) The coding scheme constructed in Section 3.3.1, following the coding process described 

in Section 3.3.2, transmits an analog source W ~ J\f(0,V) from the encoder to the decoder at 

the capacity rate 

<%„(?) :=^log(l + P), (3.23) 

with MSE distortion MSEw;r satisfying the optimal rate-distortion tradeoff function given by 

Cfb^ = 2(T + 1)l0g MSEw.r (3'24^ 

for each T. 

ii) The coding scheme constructed in Section 3.3.1, following the coding process described 

in Section 3.3.2, can transmit a digital message from the encoder to the decoder at a rate 

arbitrarily close to with PEt decays to zero doubly exponentially. 

Proof: We first derive the expressions for UT and XQLet xt := XT — XT- We can express 

xt in terms of the initial condition and channel outputs as 

t-i 
xt = atW ~alY^ a-i^Lyj. (3.25) 

3=0 

Hence 
t-i 
J2 a-^Lyj = W- a~ lx t. (3.26) 
3=0 
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On the other hand, noticing that y t  =  u t  +  N t ,  it also holds that 

Therefore, we have 

Also note that 

xt  — axt-x  — l (ut~ i + nt-1) 

=  ( a -  L c ) x t ~ i  -  L N t - 1  

= (3-27) 

t - i  
= a^W - a~t+1+jLNj. 

j=0 

This leads to that 
t- i  

xq, t - i= 
j=o 

= (3.28) 

= (1 - cr2t)W + a~2t J2 aj+1LNj. 
j=o 

zo,T = (1- a~2T~2)W + a~2T~2 oP^LNj. (3.29) 
j=o 

t-1 
Ut = cxt = a^W - V a-t+1+jLNj. (3.30) 

3=0 

Then we compute the average channel input power, followed by the rate and distortion 

computation for i), and the rate and probability of error computation for ii). From (3.30), the 

input power is asymptotically determined only by the term ]T^=o a~t+1+^LNj, which leads to 

that 

Eu2 = L2 lim V a~2t+2+2j = ^ ~2 ^ f , = V. (3.31) 
t-i-oo t—1 a2, cr — 1 j=o 
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i) The MSB distortion is 

MSEj^T = E 0-4r-4;y2 + a-^-4 
j=0 

= a-4T-4.p + a-4T-4p2 a2j 

( a^i-r (3'32) 

= 11 I P 1 

a2 — 1 
= G-4T-4p^2T+2 

= PO-2T-2. 

This distortion needs an information rate across the channel to be at least 

R = 2TT2 l0g MSE^T = loga = c f bw> (3'33) 

which is indeed the capacity of the AWGN channel and implies that the optimality is achieved, 

ii) By (3.21) and (3.29), we have 

T 

WT = W+ (o2T+2 - I)"1 a j+1LNj, (3.34) 
j=o 

that is, Wt is an unbiased estimate of W. For each given W, it holds that Wt ~ A/"(W, (o2T+2 — 

The signalling rate is 

7Z := lim —3—-log Mr = (1 - e) log a. (3.35) 
T—>oo 1 + 1 

This signalling rate is achievable if the probability of error vanishes. To compute the probability 

of error, note that for each message W, no error occurs if 
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Then the probability of error satisfies 

VP/(Mr - 1) 
PEt < 2 Q 

= 2 Q 

(„2r+2_1)-li^/EJ_oa2i+2i 

v^a T +V l -a-^-A 

(Mt — l)Va? — 1 J 

= 2QI „(T+1)« VT^T=2 ^ (3.37) 
1 — a-(r+l)(l-e) 

- Avn f_I„2(T+l)e 

(a) 

(I „ 
where inequality (a) follows from 

^> i (3.38) 1 — a-(T+l)(l-e) 

for any e > 0 and T, and (b) follows from the Chernoff bound 

m " vfeexp("5i2)' 

Thus, PET decreases to zero doubly exponentially. I 

Remark 2. We discuss some variants of the above coding scheme. It can be seen that if 

the message interval shown in (3.20) is chosen to be in some other forms, such as [0,1] or 

[10,100], ii) still holds provided that the uniform partition of the interval is fixed and known to 

both the encoder and decoder before the transmission, since the initial condition does not affect 

the asymptotic input power and how fast the error (W — W) decays. 

Another decoding method is to map xo,T directly into the closest sub-interval center and 

obtain the decoded message Wt- This is asymptotically identical to the above decoding method. 

The scaling by 1/(1 — a~2T~2) is to remove the exponentially vanishing bias in the estimate of 

W; see (3.34) and [43]-

In addition, if we use the time-varying Kalman filter gain instead of the steady-state Kalman 

filter gain, the above results also hold, since direct computation shows that the time-varying, 

transient Kalman filtering converges to its steady-state exponentially fast. 
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Remark 3. The "error exponent" of the above scheme, defined as 

}%,¥TÏ lOgCiQgC-pT^'), (3.39) 

equals 2— R) = 2e. This is the one computed in [106], and is the largest (i.e. the best) 

error exponent that one can achieve; see [113]. Hence, our scheme is optimal in achieving 

the capacity and in achieving the best error exponent. Again, this is due to the fact that 

Kalman filter provides us the optimal estimate of the message, which leads to the fastest decay 

of probability of error. 

3.5 Connections of information, estimation, and control over an AWGN 

channel with feedback 

In this section, we develop the connections of information, estimation, and control over the 

AWGN channel with feedback. This provides diversified interpretations why the above coding 

scheme is optimal. We note that the connections can be generalized to other channels to obtain 

the optimal coding schemes. 

The Kalman filtering problem admits a different state-space representation from the Kalman 

filter based coding scheme. However, they generate equal signals {rt}, {et}, {%%}, and 

and hence are considered to be "equivalent" over any finite time horizon (the precise meaning 

of equivalence between different systems can be found in Appendix A.2). Below, we rewrite 

the dynamics of the two systems for convenience. 

estimation system: < 

Xt+1 = axt -| 
unknown source 

n = CXt 

yt = rt + Nt j channel 

Xt+l — CLX-fc H- L&t ^ 

h H s 

> Kalman filter 
et =  y t - h  

2o,t = a-^xt+i 

(3.40) 

with xq W and xq := 0. 
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communication system: < 

xt+1 — CLX-fc 

n = CXt 

u t  II 1 

yt = ut + Nt 

et = yt 

2t+i = axt + Let 

h II s 

= a-^xt+l 

encoder 

channel 
(3.41) 

1 
decoder 

with xq W and xq := 0. Note that this is also a tracking-of-unstable-source problem. 

Now let 

xt := xt — xt, 

then both systems (3.40) and (3.41) become 

(3.42) 

xt+i = (a — Lc)xt - LNt = axt — Let 

control system: &t = cxt + Nt 

u t  -  cx t ,  

(3.43) 

where a > 1 and xo := W; see Fig. 3.4 for its block diagram. It is a control system where we 

want to minimize the power of u by appropriately choosing L, while stabilizing the closed-loop. 

This is a minimum energy control (MEG) problem, which is equivalent to the Kalman filtering 

problem (see [67]). In essence, the MEG system in Fig. 4.7 is the closed-loop form of the 

Kalman filtering system and the Kalman filter based coding system, and it is sometimes called 

the innovations representation of the Kalman filtering system. 

M 
—4 » —L -Hj ̂ ED-i pHh 

—EH 

Figure 3.4 The block diagram for the MEG system. 

The MEG system has interesting properties as summarized in the following lemma. 
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Lemma 1. The optimal L that solves the MEC problem 

1 
mm lim —f— EuV (3.44) 

L stabilizing,(3.43) t~>°° i + 1 

is gràen 

For the optimal L, it holds that 

i) The closed-loop pole aci locates at the reciprocal of the open-loop pole, namely 

aci := a — Lc= —; (3.46) 

ii) The transfer function from N to e is an all-pass transfer function 

WO = (3.47) 

with a flat power spectrum of magnitude a2; 

Hi )  { e t }  i s  a  wh i t e  Gauss ian  process  w i th  zero  mean  and  asympto t i c  var iance  

Ke = (A (3.48) 

Remark 4. Note that the MEC problem, a special LQG problem, is also a problem of control 

over noisy channel. Interestingly, the optimal design of the controller L does not require any 

quantization or coding. Note also that the whiteness of {et} is consistent with the results in 

Kalman filtering theory: It has been shown that the innovation processes in Kalman filtering 

problems are always white [57]; this property will be found especially useful in later chapters. 

Proof: Note that 

E(Zt+i)2 = (a - lc)2E(z,)2 + (3.49) 

which leads to that, when the closed-loop is stabilized, 

(3-50) 
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and hence 
t2  2 

(3-61) 

Then it is straightforward to see that (3.45) minimizes the average power of u. We can verify i) 

and ii) directly. The whiteness of {et} follows from that T^e{z) is an all-pass transfer function 

with a flat spectrum. I 

3.5.1 Information rate, CRB, and Bode integral 

The above shown equivalence among the feedback communication system, estimation sys­

tem, and control system immediately leads to the following results linking the information 

rate, CRB, and Bode integral. Define 

A := lim ^rT(^ ̂  /) (3.52) 
T—>oo 1+1 

to be the (asymptotic) information rate; h{y )  to be the entropy rate of process {yt}' ,  and 

S(e3'2719) to be the power spectrum of sensitivity function in (3.43), i.e., 

3(e^) = |%f„(e^9)|2. (3.53) 

Also define 

MMSEw.T := E { W \ f )  (3.54) 

to be the MMSE of estimating W bases on observation yT in the estimation system (3.40); 

(3.55) 

to be the (Bayesian) Fisher information, where Pw,yT (W, yT) is the joint density of W and y T ;  

and 

CRBW;T := (^W,T)_1 (3.56) 

to be the (Bayesian) CRB [123]. Note that it always holds, as a fundamental limitation in 

estimation theory, that 

MSEW,T > CRBM/ct, (3.57) 
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no matter how we design our estimator [123]. This inequality is referred to as the information 

inequality, Cramer-Rao inequality, or van Trees inequality. 

Proposition 1. Consider the feedback communication system (3.^1), estimation system (3.40), 

and control system (3-43). Assume that W ~ J\f(0,P\y) where 0 < Pw < oo. It holds that 

R := lim -~T(uT -» yT) = 
T—>oo T j- f -
h{e) — - log 2?re = log a 

/_ 
(3'68) 

Remark 5. This proposition links the information rate to the entropy rate of the innovations 

process {e*} (or equivalently {yt}), the degree of instability, the Bode sensitivity integral, the 

increasing rate of the Fisher information, and the decreasing rate of the MMSE and CRB. It 

implies that the fundamental limitations in information, estimation, and control coincide, a 

generalization of [28], It also implies that the increasing rate of directed mutual information is 

equal to the decreasing rate of MMSE and CRB. The Fisher information, as its name suggests, 

indeed has an interpretation in terms of mutual information defined in information theory. 

Proof: First, note that 

~T(uT —> yT) := J(^; 
t=0 
T 

t=o (3.59) 
= h{y T )  -  h(N T )  

=  Ky T )  -  h(y T \W)  

= Z(ty;/). 

This shows the first equality. The second follows from the definition of entropy rate 

h( y )  =  h( e )  := lim h(y T ) .  (3.60) 
T—>oo 1+1 
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The third is due to that, since {et} is white, 

h(e) = i log(2ireKe) = ^ log 2-jre + log a. (3.61) 

The fourth is because the sensitivity transfer function in this case equals the all-pass transfer 

function 7yve. 

We also note that 

T 
—4T—4TT/2 I 4T—4 MSEv^T = E 

= Va-'Z1~'A ( 1 - a-'AJ 
-'

A ( 1 

j=0 

2T-2 I , -2T-2 I I PW 

(3.62) 

.  T ' ) ) '  

which yields that 

(3-63) 

Since the Kalman filtering system is linear driven by Gaussian random variables, it holds that 

MSEV7,t = MMSEw^ = CRBVK.T = (2W;T)—1- (3.64) 

Thus we prove the proposition. 

3.5.2 Connection to the SK coding scheme 

The SK coding scheme that achieves the feedback capacity of the AWGN channel is illus­

trated in Fig. 3.5. In this figure, we can identify the encoder, AWGN channel, decoder, and 

the feedback link with one-step delay. The coding process is similar to that for the Kalman 

filter based coding scheme. In the original papers by Schalkwijk and Kailath, the SK coding 

scheme was obtained essentially as an application of the Robbins-Monro stochastic approxi­

mation procedure [107, 106]. Note that there are several versions of the SK scheme; Fig. 3.5 

shows a slight variation of the original one proposed in [106]. 

The Sk coding scheme is another form of the Kalman filter based coding scheme. In other 

word, the SK coding scheme essentially implements the Kalman filtering algorithm. To see 
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AWGN decoder 
encoder channel 

x0 

• — 1 
. — 1 

-2 

Figure 3.5 The SK coding scheme. 

this, note that in the SK scheme, it holds that 

ut = gat{xqit-i ~ w) 
(3.65) 

XQ,t = X0,t-1 - a t 2gyt ; 

and in the Kalman filter based scheme, it holds that 

ut = caïÇW - x0,t-i) 
(3.66) 

xo,t = xqj-1 + a t 2Lyt. 

Letting 

g := -y/a2 — 1 
(3.67) 

C := -g, 

both schemes then generate identical channel inputs, outputs, and decoder estimates, respec­

tively, and hence they are equivalent. The optimal choice of g in the SK coding scheme indeed 

corresponds to the optimal choice of Kalman filter gain. 

3.6 Numerical example 

In this section, we present numerical examples. We point out the Kalman filter based coding 

scheme and the original SK coding schemes, all suffer from the problem of numerical instability. 

Notice that, [107] involves exponentially growing bandwidth, [106] involves an exponentially 

growing parameter a1 where a > 1 and t denotes the time index, and the Kalman filter based 
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coding scheme generates a feedback signal with exponentially growing power. 

To overcome this problem and build a coding scheme feasible for simulation 1, we modify 

our Kalman filter based scheme. Notice that the innovations representation of a Kalman 

filtering system (i.e. the MEC system) is stable, namely both the unstable source and the 

unstable Kalman filter are inside the loop that is stabilized. Thus, we obtain a modification 

based on the innovation representation, as illustrated in Fig. 3.6. It follows the dynamics 

Xt — cixt~\ Lyt—i 

Ut  — CXt  

yt — ut + Nt 

xo,t = x0,t-1 + a-^Lyt, 

(3.68) 

where x_i := W / a  (i.e. xq =  W ) ,  y_i := 0, and £o,-i = 0. It can also be derived from (3.41) 

by letting xt •— xt — xt- Note that the dynamics of xt is stabilized, so no signals or parameters 

in (3.68) will be unbounded. In fact, the "control setup" indicated in Fig. 3.6 is the dynamics 

for the MEC system, stabilized in closed-loop. We remark that the modification coincides with 

the one studied by Gallager (p. 480, [43]) with minor differences; however, Gallager's scheme 

has not received enough attention in the literature. 

decoder 

,-i ,-i 

,-i 

-L —t— 1 
encoder 

•t-1 

y t-i 

XQ 

ut 

AWGN 
channel 

control setup 

Figure 3.6 The modified feedback coding scheme for an AWGN channel. 

We simulate using the modified coding scheme. Let us assume that the power budget is 

1We claim that our modification is feasible for simulation purpose, since it is numerically stable. However, 
this modification is not yet feasible for practical purpose, mainly because of the strong assumption on the 
noiseless feedback. A more practical design is under current investigation. 
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V := 3, i.e., C(V) = 1 bit per channel use. This leads to that a = 2, L = 1.5. Fig. 3.7 shows 

one trial of the coding scheme, in which (a) illustrates how the time average of the channel 

input power converges to the given power budget, and (b) illustrates the exponential decay of 

the squared estimation error (xt)2 = (xt — xt)2, as time t increases. 

Q.3 

500 1000 
time t 

1500 2000 
time t 

(a) (b) 

Figure 3.7 (a) Convergence of the average channel input power to the given 
power budget, (b) Exponential decay of squared estimation 
e r r o r  ( x t ) 2 -

In Fig. 3.8, we report the simulated probability of error obtained by running multiple 

independent trials of the coding scheme. We choose e = 0.01, namely the communication rate 

R — 0.99 bit per channel use, very close to the Shannon capacity. For verification purpose, we 

also plot the theoretic probability of error, computed using the Gaussian Q-function. We can 

see that this scheme exhibits very good performance within 120 channel uses for a rate very 

close to the Shannon capacity. 

3.7 Summary 

In this section, we study the simple case of AWGN channels with feedback. We show that 

a Kalman filter based coding scheme achieves the feedback capacity. We draw connections 

among feedback communication, estimation, and control over this channel, and show that the 

optimality and fundamental limitations in these problems coincide. We finally verify our study 

by numerical examples. This chapter lays the foundation for the following chapters. As we 

will see, the concepts and approaches developed in this chapter carry over to more complicated 
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—«—simulated 
"•o - theoretic 

û) 
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120 40 60 80 
number of channel uses (T 4- 1) 
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Figure 3.8 Simulated probability of error and theoretic probability of error, 

feedback communication systems. 
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CHAPTER 4. FREQUENCY-SELECTIVE FADING GAUSSIAN 

CHANNELS WITH FEEDBACK 

4.1 Introduction 

As we reviewed in Chapter 2, communication systems in which the transmitters have access 

to noiseless feedback of channel outputs have been widely studied. As one of the most important 

case, the SISO frequency-selective Gaussian channels with feedback have attracted considerable 

attention; see [107, 106, 92, 5, 6, 17, 96, 135, 94, 108, 116, 136, 102, 104, 28, 60] and references 

therein for the capacity computation and coding scheme design for these channels. Note 

that SISO frequency-selective Gaussian channels are sometimes referred to as the Gaussian 

channels with memory, or general Gaussian channels, or simply Gaussian channels; for precise 

description of these channels, see Section 4.2. 

We recap some of the major accomplishments for this channel. Schalkwijk and Kailath pro­

posed the SK codes for AWGN channels with feedback, which achieve the asymptotic feedback 

capacity (i.e. the infinite-horizon feedback capacity, denoted Coo 1) with reduced coding com­

plexity and improved performance [107, 106]. Cover and Pombra presented a rather general 

coding structure, called the CP structure, to achieve the finite-horizon feedback capacity (de­

noted CT, where the horizon spans from time epoch 0 to time epoch T) for Gaussian channels 

with memory; however, it involves prohibitive computation complexity as the coding length 

(T + 1) increases. Kim obtained the closed-form expression for a first-order moving-average 

noise channel based on the CP structure [60]. 

Tatikonda reformulated the problem of computing Ct as a stochastic control optimization 

problem, and proposed a dynamic programming based solution [116]. This idea was further 

explored by Yang, Kavcic, and Tatikonda, who uncovered the Markov property of the optimal 

input distributions for Gaussian channels and eventually reduced the finite-horizon stochas-

*We drop the subscript "fb" in feedback capacity notions from now on. 
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tic control optimization problem to a manageable size [136]. Moreover, under a stationarity 

conjecture that Coo equals the stationary capacity (the maximum information rate over all 

stationary input distributions), Coo for a general Gaussian channel with memory is given by 

the solution of a finite dimensional optimization problem. The stationary conjecture has been 

recently confirmed by Kim [61]. Sahai and Elia identified the connection of feedback communi­

cation to the problem of tracking unstable sources over a channel and the problem of feedback 

stabilization over a channel [102, 28]. 

As we can see from the literature, it remains an open and longstanding problem to build a 

coding scheme with reasonable complexity to achieve Coo for a Gaussian channel with memory; 

note that practical codes (rather than random codes) have not been found based on the optimal 

signalling strategy proposed by Yang, Kavcic, and Tatikonda in [136]. In this chapter, we 

propose a coding scheme for frequency-selective Gaussian channels with output feedback. This 

coding scheme achieves Coo, the asymptotic feedback capacity of the channel; utilizes the 

Kalman filter algorithm; simplifies the coding processes; and shortens the coding delay. The 

optimal coding structure is essentially an FDLTI system, which has low design/operation 

complexity; is also an extension of the SK codes; and leads to a further simplification of 

the optimal signalling strategy in [136]. The construction of the coding system amounts to 

solving a finite-dimensional optimization problem. Our solution holds for AWGN channels 

with inter-symbol interference (ISI) where the ISI is model as a stable and minimum-phase 

FDLTI system; through the equivalence shown in [116, 136], this channel is equivalent to a 

colored Gaussian channel with rational noise power spectrums and without ISI. Note that the 

rationalness assumption is widely used and not too restrictive, since any power spectrum can 

be arbitrarily approximated by rational ones. 

In deriving our optimal coding design in infinite-horizon, we first present finite-horizon 

analysis (which is closely related to the CP structure) of the feedback communication problem, 

and then let the horizon length tend to infinity and obtain our optimal coding design which 

achieves Coo- In the finite-horizon analysis, we establish the necessity of the Kalman filter: 

The Kalman filter is not only a device to provide sufficient statistics (which was shown in 

[136]), but also a device to ensure the power efficiency and to recover the message optimally. 

This also leads to a refinement of the CP structure, applicable to any Gaussian channels with 

memory. Additionally, the presence of the Kalman filter in our coding scheme signifies the 
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intrinsic connections among feedback communication, estimation, and control. In particular, 

we show that the feedback communication problem over a Gaussian channel is essentially an 

optimal estimation problem, and the achievable rate of the feedback communication system 

is alternatively given by the decay rate of the CRB for the associated estimation system. 

Invoking the Bode sensitivity characterization of the achievable rate [28], we conclude that the 

fundamental limitations in feedback communication, estimation, and control coincide. We then 

extend the horizon to infinity and characterize the steady-state of the feedback communication 

problem. We finally show that our optimal scheme achieves Coo- One main insight gained 

in this study is that, the perspective of unifying information, estimation, and control, three 

fundamental concepts, facilitates our development of the optimal feedback communication 

design. 

We also remark that the necessity of the Kalman filter in the optimal coding scheme is 

not surprising, given various indications of the essential role of Kalman filtering (or MMSE 

estimators; or MEC, its control theory equivalence; or the sum-product algorithm, its gener­

alization) in optimal communication designs. See e.g. [66, 41, 137, 136, 28, 83]. The study 

of the Kalman filter in the feedback communication problem along the line of [83] may shed 

important insights on optimal communication problems and is under current investigation. 

This chapter is organized as follows. In Section 4.2, we introduce the channel models. The 

problem formulation is given in Section 4.3, followed by the problem solution, i.e. the optimal 

coding scheme and the coding theorem. In Section 4.4, we prove the necessity of the Kalman 

filter in generating the optimal feedback. In Section 4.5, we provide the connections of the 

feedback communication problem to an estimation problem and a control problem, and express 

the achievable rate in terms of estimation theory quantities and control theory quantities. In 

Section 4.7, we show that our coding scheme is capacity-achieving. Section 4.8 provides a 

numerical example. Finally we summarize the chapter. 

4.2 Channel model 

In this section, we briefly describe two Gaussian channel models, namely the colored Gaus­

sian noise channel without ISI and white Gaussian noise channel with ISI. 
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4.2.1 Colored Gaussian noise channel without ISI 

Fig. 4.1 (a) shows a colored Gaussian noise channel without ISI. At time t, this discrete-

time channel is described as 

yt = ut + Zt, for t = 0,1, • • •, (4.1) 

where ut is the channel input, Zt is the channel noise, and yt is the channel output. We make 

the following assumptions: The colored noise {Zt} is the output of a finite-dimensional stable 

and minimum-phase LTI system Z{z) driven by a white Gaussian process {Nt} of zero mean 

and unit variance, and Z(z) is at initial rest. For any block size (i.e. coding length) of (T +1), 

we may equivalently generate ZT by 

(4.2) 

where Zt is a (T+1) X (T+l) lower-triangular Toeplitz matrix of the impulse response of Z(z ) .  

We may abuse the notation Z for both Z{z) and Zt if no confusion arises. As a consequence, 

{Zt} is asymptotically stationary. 2 

channel T 

,-i 

-l 

(a) (b) (c) 

Figure 4.1 (a) A colored Gaussian noise channel without ISI. (b) The 
equivalent ISI channel with AWGN. (c) State-space realization 
of channel T. 

Note that there is no loss of generality in assuming that Z(z )  is stable and minimum-

phase (cf. Chapter 11, [98]), implying that the initial condition of Z(z) generates no effect 

on the steady-state. Thus we made the initial rest assumption since our ultimate goal is the 

2The difference between a stationarity assumption and an asymptotic stationarity assumption may result from 
different starting points of the process: If starting from t = —oo, {Zt} is stationary, instead if starting from 
t = 0 as we are assuming here, {Zt} is asymptotically stationary. They result in exactly the same steady-state 
analysis of the feedback communication problem. 
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steady-state characterization. 

4.2.2 White Gaussian channel with ISI 

The above colored Gaussian channel induces a new channel, namely a white Gaussian 

channel with ISI, under a further assumption that Z{oo) ^ 0 (i.e. Z is proper but non-strictly 

proper). More precisely, notice that from (4.1) and (4.2), we have 

f = 2r(Z^ + ̂ ), (4.3) 

which we identify as a stable and minimum-phase ISI channel with AWGN {A^}, see Fig. 4.1 

(b). Here Z~1{z) is also at initial rest. For any fixed uT and NT, (a) and (b) generate the same 

channel output yT. 3 Note that Z^1 is the matrix inverse of Zt, equal to the lower-triangular 

Toep l i t z  ma t r ix  o f  impu l se  r e sponse  o f  Z~ 1 ( z ) .  

The initial rest assumption on Z~1 can be imposed in practice equivalently by, first driving 

the initial condition of the ISI channel to any desired value (known to the receiver) before 

a transmission, and then removing the response due to that initial condition at the receiver. 

Such an assumption is also used in [136, 116]. We further assume for simplicity that Z(oo) = 1; 

for cases where g := Z{oo) ^ 1, we can normalize Z{z) by scaling it by l/g. Hence, Zt is a 

lower triangular Toeplitz matrix with diagonal elements all equal to 1 (and thus is invertible). 

We can then write the minimal state-space representation of Z~ x  as (F ,G,H,  1), where 

F e Rm is stable, (F, G) is controllable, (F, H) is observable, and m is the dimension or order 

of Z~l. Let us denote the channel from u to y in Fig. 4.1(b) as !F, where 

yT := Z^uT + NT  = Z^f. (4.4) 

The channel J7 is described in state-space as 

, , -r / SW = Fst + Gut (a r\ 
channel T : (4.5) 

yt = Hst + ut + Nt, 

where so := 0; see Fig. 4.1 (c). Notice that channel T is not essentially different than the 

3More rigorously, the mappings from (u, N) to y are T-equivalent. For a discussion about systems represen­
tations and equivalence between different representations, see Appendix A.2. 
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channel from u  to y ,  since {y1} and {y 1 }  causally determine each other. 

We concentrate on the case m > 1; the case that m is 0 (i.e., T is an AWGN channel) was 

__ studied in Chapter 3. 

Before formulating the steady-state communication problem, we distinguish among the 

three scenarios: Finite-horizon (i.e. finite coding length), infinite-horizon (i.e. infinite coding 

length), and steady state. Finite-horizon problems often have time-dependent (i.e. time-

varying) and horizon-dependent solutions (similar to finite-horizon Kalman filtering). The 

horizon-dependence may be removed in the infinite-horizon scenario, and furthermore, the 

time-dependence may be removed in the steady-state scenario. If we find the (stationary, 

time-invariant) steady-state solution (which by [61] is also the infinite-horizon solution), we 

can truncate it and employ the truncation if the practical problem is in finite-horizon but the 

horizon is large enough. This truncated solution would greatly simplify the implementation 

while having a performance sufficiently close to finite-horizon optimality. 

4.3.1 Problem formulation 

For a Gaussian channel with feedback, the channel input may take the form 

for any 7* 6 Rlxt, rjt 6 Rlxt, and zero-mean Gaussian random variable Ct € R which is 

independent of ut_1 and yt_1 (cf. [116, 136]). Therefore, the channel inputs are allowed to 

depend on the channel outputs in a strictly causal manner. Our objective in this chapter is to 

design encoder/decoder to achieve the (stationary) asymptotic capacity, given by 

4.3 Problem formulation in steady-state and the solution 

ut = 7tu1 1 + W 1 + Ct (4.6) 

Coo CooCP) :— sup 
{ut} stationary,(4.6) 

s.t. linvr-»oo EUT'Ut/(T+1)<V 

t(uT - yT) 
(4.7) 

where V > 0 is the power budget and 7 (uT —> yT) is the directed information from u T  to y T  

(cf. [116]). This capacity has both operational and information meanings. For more details 
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about Cqo, refer to Section 4.7.1. 

The problem of solving Coo may be equivalently formulated as minimizing the average 

channel input power while keeping the information rate bounded from below, namely for 1Z > 0, 

Therefore Poo(^) is the inverse function of C00(7:>), i.e., Ccc,(P00(7?.)) = 71. 

Approach: Our approach to solve the steady-state communication problem is to investi­

gate the finite-horizon problem first, and then let the horizon increase to infinity, which leads 

to a unified view of infinite-horizon and finite-horizon in terms of Kalman filter based coding 

scheme. Other approaches not pursued in this thesis are also possible, such as applying the 

idea in [28] to the optimal signalling strategy in [136], though they generate results not as rich 

as our approach does. 

4.3.2 Coding scheme 

The rest of this section presents the solution to the above problem. In this subsection, we 

introduce an encoder/decoder structure and explain how to choose the parameters to ensure 

the optimality, and then describe the encoding/decoding process, that is, how we assign the 

message to be transmitted, and how we recover the message. In the next subsection, we 

present the coding theorem which states that our encoding/decoding structure with the chosen 

parameters achieves Coo- The proof of the theorem will be developed in Sections 4.4 to 4.7. 

The encoder/decoder structure 

In state-space, the encoder and decoder are described as 

:= 

{ut} stationary,(4.6) 

s.t. limj'_>00 I(uT—>yT)/(.T+i)>TZ 

inf 
(4.8) 

xt+i = Ax t  

Encoder: n Cx t  (4.9) 

ut n - n  

I 
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and 

Decoder: < 

Si+l = Fst  + L26t  

et = yt - Hst 

xt+1 = Axt + Liet 

h - Câ, 

= A'^xt+i, 

(4.10) 

where âo == 0, &o := 0, ,4 € R(^+i)x(n+i)^ ^ ̂  %ix(n+i)^ ̂  ̂  ^ g ^ 

(n + 1) the encoder dimension, xt the encoder state, and xqj the decoder estimate. See Fig. 4.2 

for the block diagram. Observe that —rt is the feedback from the decoder based on the channel 

output yi_1, and thus ut depends on y<_1 but not yt- It further follows that —f4 — Gtlf for 

some strictly lower triangular Toeplitz matrix Gt- Here A, C, ut, etc. depend on n, but we do 

not specify the dependence explicitly to simplify notations. 

encoder channel T decoder 

et 

z-l H 
H z-l H 

EE} 
f c . | i H  A-t-f+xo,t 

<P ' 'U'1!—r-*fgT-

4ÂH Xt 

Figure 4.2 The encoder/decoder structure for T. 

Optimal choice of parameters 

Fix a desired rate 71. Let DI := 2n and n := m — 1 (recalling that m is the channel 

dimension), and solve the optimization problem 

[af\Z**] := arg inf 
O/GLR" 

s.t. E=ASA'-A2C'CSA7(Ci;C/+l) 

BSD', 
(4.11) 

where 

A := 
A 0 

F 
, C : =  [ C  H ] ,  B : = [ C  0  ] ,A:=  

Onxl In 

±DI af 

,C := 1 0i> 

(4.12) 
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Note that we need to solve (4.11) twice (one for +DI in A and one for —DI in A), and choose 

the optimal solution as the one with the smaller objective function value. Then we form the 

optimal Aopt based on a^p<, and let (n* + 1) be the number of unstable eigenvalues in Aopt, 

where n* > 0. 

Now let n n*, solve (4.11) again, and obtain a new a0^1 and Eopt. Then form Aopt, let 

A* = Aopt, E* = E°p\ C* := [l,0ixn.], and form A*,C*, and B*. Let 

L* := 
L* 

LI 
(413) 

C*E*C*' + 1 ' 1 ; 

As we will show, (A*, C*)  is observable, and A* has exactly (n* + 1) unstable eigenvalues. 

We assign the encoder/decoder parameters to the scheme built in Fig. 4.2 by letting 

n := n*, A := A*, C := C*,L 1 := L\,L2 := L\. (4.14) 

We then drive the initial condition so of channel T to zero. Now we are ready to communicate 

at a rate 7Z using power -Poo(%) — D*E*D*'. 4 

4.3.2.1 Encoding/Decoding process 

Transmission of analog source 

The designed communication system can transmit either an analog source or a digital 

message. In the former case, we assume that the encoder wishes to convey a Gaussian random 

vector through the channel and the decoder wishes to learn the random vector, which is a rate-

distortion problem. The coding process is as follows. Assume that the to-be-conveyed message 

W is distributed as A/"(0,/n*+i) (noting that any non-degenerate (n* + l)-variate Gaussian 

vector W can be transformed into this form). Assume that the coding length is (T + 1). To 

encode, let xq W. Then run the system till time epoch T, obtaining $o,t, t = 0,1, • • • ,T. 

To decode, let Wt := xo,t for t = 0,1, • • •, T. 

The quantities of interest include the squared-error distortion, defined as 

MSE(Wi) := E(W -  W t ) (W -  W t ) ' .  (4.15) 

4We see from (4.11) that for any channel J-, a simple upper bound of the function Poo {TV) is given by 
m i n { ( 2 2 K  —  1 ) ( Z ( 2 7 2 ' ) ) 2 ,  (2 i n  — l ) (Z (—2 T i ) ) 2 } ,  o b t a i n e d  b y  u s i n g  o n e  u n s t a b l e  e i g e n v a l u e  i n  A.  
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It will become clear that MSE(Wj) can be pre-computed before the transmission, and thus the 

coding length can be determined a priori to ensure a desired distortion level. 

Transmission of digital message 

To transmit digital messages over the communication system, let us first fix e > 0 small 

enough and the coding length (T + 1) large enough. Let 

2;:=[7n.+i,0]Z*[7*.+i,0]'. (4.16) 

Assume that the matrix (A*')~T~lE*has an eigenvalue decomposition as 

(A*,)-T-1E*(A*)-T_1 = ETA.TE'T, (4.17) 

where Et = • • •, e(n*+1)] is an orthonormal matrix and At is a positive diagonal matrix. 

Let OT,i be the square root of the (i, %)th element of At- Let B 6 K"*+1 be the unit hypercube 

spanned by columns of Et, that is, 

i=0 

= (4.18) 

Next we partition the ith side of B into (cry,*) ^ ^ segments. This induces a partition of B 

into Mt sub-hyper cubes, where 

(4,9, 

= [det ((A*')_T_1E*(A*)-r_1)] 2 . 

We then map the sub-hyper cube centers to a set of My equally likely messages. The above 

procedure is known to both the transmitter and receiver a priori. 

Suppose now we wish to transmit the message represented by the center W. To encode, 

let xq W. Then run the system till time epoch T. To decode, we map fo,T into the closest 

sub-hypercube center and obtain the decoded message Wy. We declare an error if Wy ^ W, 

and call a (an asymptotic) rate 

R := lim 1 log My (4.20) 
T—»oo 1+1 
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achievable if the probability of error PEj> vanishes as T tends to infinity. We remark that 

this coding process is the one used in [28] for Gaussian channels with memory, which was an 

extension of the SK codes. We also remark that, similar to the analog transmission case, the 

coding length (T + 1) can be pre-determined. 

As we have seen, the encoder/decoder design and the encoding/decoding process can be 

done rather easily. The computation complexity for encoding/decoding grows as 0(T). Once 

again, as in the AWGN case, the encoder may be viewed as a control system, and the decoder 

may be viewed as an estimation system. 

4.3.3 Coding theorem 

Theorem 2. Construct the encoder/decoder shown in Fig. 4-2 using n*, A*, C*, L\, and L*2. 

Then under the power constraint Eit2 < V, 

i) The coding scheme transmits an analog source W ~ A/"(0, In*+i) from the encoder to 

the decoder at rate COQ(V), with MSE distortion MSE(Wr) achieving the optimal asymptotic 

rate-distortion tradeoff given by 

Coo CP) - rlm 2(T + -Q lo§ det MSE(#r) ' 

ii) The coding scheme can transmit digital message from the encoder to the decoder at a 

rate arbitrarily close to CqqCP), with PEt decays to zero doubly exponentially. 

The proof of the theorem will be developed in the subsequent four sections. In Section 4.4, 

we consider a general coding structure in finite-horizon which may be viewed as a generalization 

of our optimal coding structure. We show that this general structure essentially contains a 

Kalman filter. The presence of the Kalman filter links the feedback communication problem 

to an estimation problem and a control problem, and hence we rewrite the information rate in 

terms of estimation theory quantities and control theory quantities; see Section 4.5. Sections 

4.4 and 4.5 are focused on finite-horizon. In Section 4.6, we extend the horizon to infinity 

and characterize the steady-state behavior. Then in Section 4.7, we show that our optimal 

encoder/decoder design is actually the solution to the steady-state communication problem. As 

we can see, the development highly relies on the interactions among information, estimation, 

and control. 
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4.4 Finite horizon: Necessity of Kalman filter for optimal coding 

In this section, we consider a finite-horizon coding structure that includes our optimal 

design in Section 4.3 as a special case. This general structure is useful since: 1) searching 

over all possible parameters in the general structure achieves Coo, that is, there is no loss of 

generality or optimality to focus on this structure only; 2) we can show that to ensure power 

efficiency (to be explained), the general structure necessarily contains a Kalman filter. The 

general coding structure is in fact a variation of the CP structure, and hence our Kalman filter 

characterization leads to a refinement of the CP structure. 

4.4.1 Feedback capacity Ct 

The following definition of feedback capacity is based on [116]. 

Definition 1. The "operational" or "information" finite-horizon feedback capacity CT, subject 

to the average channel input power constraint 

PT := lim -L-EUT ,UT  < V, (4.22) 
T—>oo 1 + i 

is 

CT(P) := CT •- sup —^7(uT -> yT), (4.23) 

where ~f {uT —> yT) is the directed information from uT to yT, and the supremum is over all 

possible feedback-dependent input distributions satisfying (4-22) and in the form 

ut = Itu4-1 + W-1 + Ct (4.24) 

for any 71 € Rlxt, % 6 Rlxt, and zero-mean Gaussian random variable Ct € R independent of 

-i/-1 and yt_1. 

4.4.2 A general coding structure 

Fig. 4.3 illustrates the general coding structure, including the encoder and the feedback 

generator, a portion of the decoder. Below, we fix the time horizon to be {0,1, • • • ,T} and 

describe the coding structure. 
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feedback 

encoder channel T generator 

-n 

-1 .-1 

Figure 4.3 A general coding structure for channel T. 

Encoder: The encoder follows the dynamics (4.9). We assume that the encoder dimension 

(n + 1) satisGes 0 < n < T, VP ~ jV(0,7»+i), ^ € R("+i)x("+i), C E (A,C) is 

observable, and none of the eigenvalues of A are on the unit circle or at the locations of the 

eigenvalues of F. We then let 

r*(A,C) := := 

F(A, C) := r := [Cz, A'C', •••,  AT /C'Y (4.25) 

kP(A,C) := kp := E rTrT'. 

Therefore, Tn is the observability matrix for (A,C) and is invertible, F has rank (n + 1), 

rT = TW, and kP = FF. 

Feedback generator: The feedback signal — f t  is generated through the feedback generator 

Gt> i-e. 

— FT  = GTVT  • (4.26) 

We assume that Qt € r(t+1)x(t+1) js a strictly lower triangular matrix. Clearly, the optimal 

encoder/decoder can be viewed as a special case of the general structure. Throughout the 

chapter, the above assumptions on the encoder/decoder are always assumed unless otherwise 

specified. For future use purpose, we compute the channel output as 

/ = (7 - Z^2r)-i(Z^rT + M} (4.27) 
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Definition 2. Consider the general coding structure shown in Fig. 4-3. Define 

Cr,n := CT,n(P) := 1 HP _1_ 1 AeE(n+1)x ("+1) 1 < 1 

s.t. EuT'uT/(T+1)<'P 

s u p  — - / ( W ; y T )  
(4.28) 

and define its inverse function as Pr,n(T^)-

In other words, Cr,n is the finite-horizon information capacity for a fixed transmitter di­

mension n. It holds that Cn>n — Cn and hence limn_>oo Cn,n — Cx> (see Lemma 2 and Section 

4.7.1). Moreover, as we will show, Coo can be achieved using this structure. 

4.4.3 Relation between the CP structure for ISI Gaussian channel and the general 

coding structure 

In this subsection, we outline the relation of the CP structure to our general coding struc­

ture. In fact, our general coding structure was obtained by studying the CP structure for ISI 

Gaussian channels. This explains how the general coding structure (and hence the optimal 

coding scheme) was formulated. 

4.4.3.1 CP structure for colored Gaussian noise channel 

We briefly review the CP coding structure for the colored Gaussian noise channel specified 

in Section 4.2.1; see [17, 16] for more details of the CP structure. Let the colored Gaussian 

noise ZT have covariance matrix K^\ and 

where Br is a (T +1) x (T +1) strictly lower triangular matrix, vT is Gaussian with covariance 

5This vT is called innovations in [16, 136]; it should not be confused with the Kalman filter innovations in 
this thesis. 

UT := BtZT + vT, (4.29) 

kP > 0 and is independent of Z T .  5 This generates channel output 

f = (7 + 5r)Zr + „T. (4.30) 
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Then the highest rate that the CP structure can achieve in the sense of operational and 

information is 

Since the operational capacity definitions in [17] and [116] coincide, we have CT,CP(P) — 

CtÇP)- This may also be seen by observing that, any channel input (4.24) can be rewritten in 

the form of (4.29), but since (4.24) is sufficient to achieve Cr, we conclude that (4.29) is also 

sufficient to achieve CT-

4.4.3.2 CP structure for ISI Gaussian channel 

By using the equivalence between the colored Gaussian noise channel and the ISI channel 

J7, we can derive the CP coding structure for F, which is obtained from (4.29) by introducing 

a new quantity rT as 

(4.31) 

where the supremum is taken over all admissible kP and Bt satisfying the power constraint 

Pr := ^-tr(9rKg% + )) < P. (4.32) 

rT := (I + BT) 1VT .  (4.33) 

By ZT = ZtN t and yT = 2tVT, we have 

uT = Bt2tN t + (/ + Bt)t t 

yT = 2Ç 1 ( I  +  B T ) Z T N T  +  Z ^ { I  +  B T ) r T  

=  Z ^ 1 ( I  +  B T ) ( Z T N T  + r T ) .  

(4.34) 

This implies that, the channel input uT can be represented as 

uT = (I + BT) 1BTZTUT  + TT ,  (4.35) 
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which leads to the block diagram in Fig. 4.4. 

channel T 

Figure 4.4 The block diagram of the CP structure for ISI Gaussian channel 
T. 

The capacity Ct now takes the form 

1 
CT{V) = sup 

2 (T +1) 
log det 

= sup log det + 5r)(3r^ + %P)(7 + 

logdet^Z^ + j^M) 

(4.36) 

= ^2(fTï) 

where the supremum is over the power constraint 

1 
Pt -

T + 
Ytr(ar^rZ^^ + (7 + Br)^^ + < ?>- (4.37) 

It is easily seen that the capacity in this form is identical to (4.31). 

4.4.3.3 Relation of the CP structure with the general coding structure 

We can establish correspondence relationship between the CP structure for ISI Gaussian 

channel J7 in Fig. 4.4 and the general coding structure for F in Fig. 4.2. In fact, the general 

coding structure for T in Fig. 4.2 was initially motivated by the CP structure for channel T 

in Fig. 4.4. 

For any fixed (kP , Bt) in the CP structure, define in the general coding structure that 

GT : 

A : 

C 

(/  + BT)-LBTZT  

To1 
0 IT 

* 
Fo (4.38) 

= fl 0 o] r0, 
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where Fq := {kP)z, and * can be any number. (Note that the case kP > 0 but kP is 

not positive definite can be approached by a sequence of positive definite KrT\ and thus it 

is sufficient to consider only positive definite kP in establishing the correspondence relation 

of the two structures.) Then it is easily verified that GT is strictly lower triangular, (A, C) is 

observable with a nonsingular observability matrix F = FQ, and A can have eigenvalues not 

on the the unit circle and not at the locations of F's eigenvalues. Therefore, for any given 

(KP,BT), we can find an admissible (A, C, GT), and it is straightforward to verify that they 

generate identical channel inputs uT. 

Conversely, for any fixed admissible (A,C,Gt)  with € H(n+1)x(n+1)j we can obtain an 

admissible {KP ,BT) as 

Br == 2rZpi(T-2rZ^)-i (4.39) 

Kf) := r(A,C)F(A,C)', 

which generates identical channel input uT as (A, C, GT) does. 

As a result of the above reasoning, there is a corresponding relation between the CP 

structure for T and the general coding structure, and the maximum rate over all admissible 

{KP\BT) (namely CT) equals that over all admissible (A, C, GT)- In other words, we have 

Lemma 2. 

Or(7>) = Cr,T(P). (4.40) 

Proof: Note that CT,T is the maximum rate over all admissible (A, C, GT) with 6 RCr+1)x(r+1). 

• 
This lemma implies that the general coding structure with an extra constraint T = n 

becomes the CP structure, that is, in the CP structure, the dimension of A is equal to the 

horizon length. One advantage of considering the general coding structure is that we can allow 

T n, which makes it possible to increase the horizon length to infinity without increasing the 

dimension of A, a crucial step towards the Kalman filtering characterization of the feedback 

communication problem. 
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4.4.4 The presence of Kalman filter 

We first compute the mutual information in the general coding structure. 

Proposition 2. Consider the general coding structure in Fig. 4-3- Fix any 0 < n < T, and 

fix any A, C, and GT- Then it holds that 

=  I{ r T \ y T )  

= ~T (uT yT) 

= \ log det kP 

= i log det (J + Z^kPz?1') 

= I log det (/ + Z^TT'Z^1'), 

(4.41) 

which is independent of GT-

Proof: 

(a) 

(b) 

Ky T )  -  h(y T \W)  

&(/) _/,((;_ + ArT)|ty) 

^ logdet(27rejkP)  — h (N T )  

7 (uT -»• yT) 
(4.42) 

— \ log det (T) 

- llogdet(7 + Zp^^Zp^), 

where (a) is due to r T  — TW,  det(AB)  = det A det B, and det(7 — Z^Gt)-1 — 1; and (b) 

follows from [28]. I 

Proposition 2 implies that I (W;y T )  is independent of the feedback generator GT, and 

dependent only on kP or equivalently on (A, C). Thus, fixed (A, C) implies fixed information 

rate, and hence the optimal feedback generator has to be chosen to minimize the average 

channel input power, which turns out to contain a Kalman filter. Note that the counterpart of 

th i s  p ropos i t ion  in  in f in i t e -hor i zon  was  p roven  in  [28] .  Now we  can  de f ine ,  fo r  a  f ixed  (A ,  C) ,  

the information rate across the channel to be 

#r(A,C) := 
T + l ' 

(4.43) 

The optimal feedback generator for a given (A, C) is found in the next proposition. 
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Proposition 3. Consider the general coding structure in Fig. 4-3. Fix any 0 < n < T. Then 

*) 

f¥'"(K) = Aï.çJâuA.c, 
s.t. Rx{AiC)'>7t 

where G^(A, C) is the optimal feedback generator for a given (A, C), defined as 

SKA,C):= arg^i^ 

ii) The optimal feedback generator C) is given by 

g^(A, C) = -^.(A, C)(7 - Z^(A, C))-\ 

(4.44) 

(4.45) 

(4.46) 

where Q^(A, C) is the strictly causal MMSE estimator (Kalman filter) of rT given the noisy 

observation yT ~ Z^1^ + NT, i.e., 

Q^(A ,C)  :=  arg ^ inf 
1 

E(r T  -  GTYT)(RT  -  GTU1)' ,  
-Tv 

gT6K(T+l)x(T+l) T + 1 (4.47) 

where GT w strictly lower triangular. See Fig. 4-5 for the associated estimation problem, Fig. 

4 -6  (a )  for  the  Ka lman  f i l t e r  ( / ^ (A ,  C) ,  and  (b )  for  the  op t imal  f eedback  genera tor  Ç /£ (A ,  C) .  

un known source 5D.ÈD..0.— estimator 

I w 
-1 *• 

A — 

G H 

NT  

e-*6 Vt GT 

(a) 

Figure 4.5 An estimation problem over channel F. 

Remark 6. Proposition 3 reveals that, the minimization of channel input power in a feedback 

communication problem is equivalent to the minimization of MSE in an estimation problem. 

This equivalence yields a complete characterization (in terms of the Kalman filter) of optimal 

feedback  genera tor  £ /£ (A,  C)  for  a  g iven  (A ,  C) .  
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Kalman filter Qj, 

. —1 

(a) 

-n 

(b) 

Figure 4.6 (a) The Kalman filter <y£(A, C) .  (b) The Kalman filter based 
feedback generator <?y(A, C). Here (A, L\JT, —C, 0) with XT de­
notes a state-space representation with xt being its state at time 
t, and XQ being 0; see (4.57) and (4.60) for L\it and Li$. 

Remark 7. Proposition 3 i) implies that we may reformulate the problem of Cx,n (or Pr,n) 

as a two-step problem: In step 1, we fix (A, C), i.e. fixing the rate, and minimize the input 

power by searching over Q; and in step 2, we search over all possible (A, C) subject to the 

rate constraint. The role of the feedback generator G for any fixed (A, C) is to minimize 

the input power. Then ii) solves the optimal feedback generator £?y(A, C) by considering the 

equivalent optimal estimation problem in Fig. 4-5 whose solution is the Kalman filter. Notice 

that the Kalman filter can also give us the optimal estimate of the message W. Hence, the 

Kalman filter leads to both power efficiency and the best estimate of the message. We finally 

note that the necessity of the Kalman filter is not surprising given the previous indications in 

/JOG, g, J02, jjg, gay, ek. 

Proof: i) Notice that for any fixed (A, C), RT(A, C) is fixed. Then from the definition of 
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PR,n (7<L), we have 

s.i. RT(A,C)>K 

inf inf (4'48) 

AC (A,C) fixed,gT T + 1 
s.t. Rx{A^C)>TZ 

Then i) follows from the definition of G^(A ,  C) .  

ii) Note that for the general coding structure, it holds that 

uT — rT + (-rT) = rT + GtVt- (4.49) 

Then, letting 

Gt ~Gt{I — zj}Gt)-1 (4.50) 

and yT Z^ lrT + Nr, we have GtVt — —GtVt- Therefore, 

Gt( AC)  =  a r g i n f — E  ( r T  + GTy T ) ( r T  + GtV t)' 

^  1  ^ _ T V  ( 4 . 5 1 )  
= arginf ——E(r -  GtV )(r -  GtV )'• 

gT 1 + 1 

The last equality implies that the optimal solution Gt is the strictly causal MMSE estimator 

(with one-step prediction) of rT given yT] notice that Gt is strictly lower triangular. It is well 

known that such an estimator can be implemented recursively in state-space as a Kalman filter 

(cf. [58, 57]). Finally, from the relation between Gt and Gt-, we obtain (4.46). The state-space 

representation of £/£(A, C) needs only a straightforward computation, as shown in Appendix 

A.2. 1 

Our study on the general coding structure also refines the CP structure. We can now 

identify more specific structure of the optimal (KP , BT) • Indeed, we conclude that the CP 

structure needs to have a Kalman filter inside. We may further determine the optimal form of 

Bt- From (4.39) and (4.46), we have that 

By = -(%(A,C)&p\ (4.52) 
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Therefore, to achieve CT in the CP structure, it is sufficient to search (K^, BT) in the form 

of 
af) := (i-^(A,c)z^)r(A,c)r(A,cy(7-^KC)z^y 

(453) 
B* := -g*(A,C)Z^\ 

Additionally, as T tends to infinity, it can be easily shown that {%} is a stable process in order 

to achieve Cqq. 

We remark that it is possible to derive a dynamic programming based solution ([116]) to 

compute Cr.n, and if we further employ the Markov property in [136] and the above Kalman 

filter based characterization, we would reach a solution with complexity 0(T) for computing 

Cr,n and Ct- This may be pursued elsewhere. 

4.5 Finite horizon: Feedback rate, CRB, and Bode integral 

We have shown that in the general coding structure, to ensure power efficiency for a fixed 

(A, C), we need to design a Kalman-filter based feedback generator. The Kalman filter im­

mediately links the feedback communication problem to estimation and control problems. In 

this section, we present a unified representation for the general coding structure (with G be­

ing chosen as Q*(A, C)), its estimation theory counterpart, and its control theory counterpart. 

Then we will establish connections among the information theory quantities, estimation theory 

quantities, and control theory quantities. 

4.5.1 Unified representation of feedback coding system, Kalman filter, and MEC 

In this subsection, we will present the dynamics for the estimation problem and the general 

coding structure, then show that they are governed by one set of equations, which may also 

be viewed as a control system. 

The estimation system 

The estimation system in Fig. 4.5 consists of three parts: the unknown source rT to be 

estimated or tracked, the channel T (without output feedback), and the estimator which we 

choose as the Kalman filter G*', we assume that (A, C) is fixed and known to the estimator. 
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The system is described in state-space as 

estimation system: < 

xt-\-1 — Axt 

T t — Cxt 

Si+i = F st + Grt 

y t  = Hst  +  n  +  Nt  

%t+1 — Axt -h L\ttet 

n = Cr* 

st+i — F st + Grt + L2,tet 

e t  = y t -  H s t  -  f t  

| unknown source 

| channel F 

(4.54) 

> Kalman filter Q*(A,  C)  

and L2,t € Rm are the with XQ := W, SO := 0, So := 0, and XQ :— 0. Here Li<t E 

time-varying Kalman filter gains specified in (4.59). 

The general coding structure with the optimal feedback generator 

The optimal feedback generator for a given (A, C) is solved in (4.46), see Fig. 4.6 (b) for 

its structure. We can then obtain the minimal state-space representation of <?£(A, C), and 

describe the general coding structure with 5y(A, C) as 

general coding structure: < 

Xt+l = Axt 

n 
= > encoder 

Ut =  n  - f t  

St+1 = F st  + Gut  
channel T 

yt — Hst + ut + Nt ^ 

St+l — F st  + L2,tet 

et = yt  — H st  et = yt  — H st  
> optimal feedback generator 

Xt+l = Axt L\ tt&t 

- f t  II 1 g
 

(4.55) 

with xq := W, so := 0, sq :— 0, and XQ 0. See Appendix A.2 for the derivation of the 

minimal state-space representation of Çj>(A, C). It can be easily shown that rt, ft, &t, %t, and 

xt in (4.54) and (4.55) are equal, respectively, and it holds that 

(4.56) 
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The unified representation 

Define 

xt 

St 

Xo 

xt - xt 

St — St = St — St 

~ X t ~  

St 
'W 

0 

A 0 

GC F 

(4.57) 

C := 

L± := 

[C H] 

[C 0] 

' Lu  

.Lu. 

Note that Xt is the estimation error for \x't,s'^'. Substituting (4.57) to (4.54) and (4.55), we 

obtain that both systems become 

control system: 

Xt+i = 

et = 

ut = 

- LfC)Xf — LtNt — AXj — LfBt 

t + Nt 

•t; 

(4.58) 

see Fig. 4.7 for its block diagram. It is a control system where we want to minimize the 

power of u by appropriately choosing Lt. This is an MEC problem, which is useful for us to 

characterize the steady-state solution and it is equivalent to the Kalman filtering problem (see 

[67]). 

The signal et in (4.58) is called the Kalman filter innovation or innovation 6, which plays 

a significant role in Kalman filtering. One fact is that {et} is a white process, that is, its 

covariance matrix kP is a diagonal matrix. Another fact is that eT and yT determine each 

other causally, and we can easily verify that h(e T )  =  h(y T )  and det KyT> = det Kf • We 

remark that (4.58) is the innovations representation of the Kalman filter (cf. [57]). 

,(T) 

6The innovation defined here is different from the innovation defined in [17] or [136]. 
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w 

«t ,-i 

et 

CD >(&< Nt 

Figure 4.7 The block diagram for the MEC system. Here the block 
(A, C, 0) with xt denotes the state-space representation 
with xt and W being its state at time t and at time 0. 

For each t, the optimal Lt is determined as 

Lt := 
Li,t 

L2,t 

AS*C 
K, e,t 

(4.59) 

where S4 := EXtX£, Ke>t E(et)2 — CEjC + 1, and the error covariance matrix St satisfies 

the Riccati recursion 
AZtC'CStA' 

•'t+i AS 
CSfC +1 

(4.60) 

with initial condition 

So := (4.61) 
In+l 0 

0 0 

This completes the description of the optimal feedback generator for a given (A, C). 

The meaning of a unified expression for three different systems (4.54), (4.55), and (4.58) is 

that the first two are actually two different non-minimal realizations of the third. The input-

output mappings from NT to eT in the three systems are T-equivalent (see Appendix A.2). 

Thus we say that the three problems, the optimal estimation problem, the optimal feedback 

generator problem, and the MEC problem, are equivalent in the sense that, if any one of the 

problems is solved, then the other two are solved. Since the estimation problem and the control 

problem are well studied, the equivalence facilitates our study of the communication problem. 

Particularly, the formulation (4.58) yields alternative expressions for the mutual information 

and average channel input power in the feedback communication problem, as we see in the 
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next subsection. 

We further illustrate the relation of the estimation system and the communication system 

in Fig. 4.8: (b) is obtained from (a) by subtracting ft from the channel input and adding 

Z^}ft back to the channel output, which does not affect the input, state, and output of G?- It 

is clearly seen from the block diagram manipulations that the minimization of channel input 

power in feedback communication problem becomes the minimization of MSE in the estimation 

problem. This is indeed the extension of how we obtained a Kalman filter based coding scheme 

from a Kalman filtering system in the AWGN case to the general Gaussian channel case. 

W 
Xt -1 

.-1 

-1 

—1 

-1 

(b) 

Figure 4.8 Relation between the estimation problem (a) and the commu­
nication problem (b). 

4.5.2 Mutual information in terms of Fisher information and CRB 

Proposition 4. For any fixed 0 < n <T and (A, C), it holds that 

i) 

I(W\yT) = i log det K{p = ]• log Ke>t 

T 

2 e 2 
t= 

i T 
= -%]log(C2tC' + l) 

t=o 

= ^ log det MMSE^r 

I 
= — log det Iw,T 

= - log det CRBjyjj.; 

(4.62) 
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ii) 

1 T 

1 t=0 

= j. + ^trace(CMMSEr>r) (4.63) 

1 T 

= ^TT Z 
1 +lt^Q 

where MMSE^y is the minimum MSE of W, CMMSE^y is the causal minimum MSE of rT, 

Jw,T is the Bayesian Fisher information matrix ofW for the estimation system (4-54), and 

CRBVF.T is the Bayesian CRB ofW [123]. 

Remark 8. This proposition connects the mutual information to the innovations process 

and to the Fisher information, (minimum) MSE, and CRB of the associated estimation prob­

lem. As a consequence, the finite-horizon feedback capacity Ct,u is then linked to the smallest 

possible Bayesian CRB, i.e. the smallest possible estimation error covariance. Thus the funda­

mental limitation in information theory is linked to the fundamental limitation in estimation 

theory. As in the AWGN case, we notice that the Fisher information, an estimation quantity, 

indeed has an information theoretic interpretation as its name suggests. In fact, the connection 

between mutual information and MMSE holds independent on how the feedback generator is 

designed, and hence it holds for both feedback communication and feedforward communication. 

Proof: i) First we simply notice that h(yT) — h(eT), and Ke>t — CSjC + 1. Next, to find 

MMSE of W, note that in Fig. 4.5 

f = Z^VW + Nt (4.64) 

and that W ~ A/*(0,1), NT ~ A/*(0,1). Thus, by [58] we have 

MMSEw,t = (/ + VZ^'Z^T)-1, (4.65) 

yielding 

detMMSEm = àet{I + Z~lTV'Z"1')-1 

(4.66) 
= det(/ + Z^kP^ZT1')-1. 

Besides, from Section 2.4 in [123] we can directly compute the FIM of W to be [I+VZ^1'Z^Y). 

Then i) follows from Proposition 2 and (4.58). 
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ii) Since ut = BXt = Cxt = rt—ft and — A^MSEw^A*', we have E(itt)2 = DEjD' = 

CExtx'tC' = E(rt - ft)2, and then ii) follows. I 

Corollary 1. For any fixed 0 <n <T and (A, C), it holds that 

^ i(:y;/) = lMMSE^. (4.67) 
dXw,T 2 

Proof: By 

we derive 

I(W;yT) = i log det MMSE^T = i log det %w,T, (4.68) 

^ -7(^;/) = &%^r)^ = ^MMSE^, (4.69) 
dlw,T 2 ' 2 

based on the matrix differentiation formula proven in [2]. I 

We can also compute that in the m = 0 or m = 1 case, the effective SNR equals (Tw,t~ 1), 

which leads to that 

(IT; /) = ^MMSE^, (4.70) 

the formula linking mutual information and MMSE obtained by Quo, Shamai, and Verdu [51]. 

Though in our case, the input distribution is Gaussian, more restrictive than theirs assumption 

of arbitrary input distributions, our formula holds for some colored Gaussian noise channels. 

We wish to study this problem in full generality; this is subject to ongoing research. 

4.5.3 Necessary condition for optimality 

Before we turn to the infinite-horizon analysis, we show in this subsection that our general 

coding structure together with the optimal feedback generator satisfies a "necessary condition 

for optimality" discussed in [60]. The condition says that, the channel input Ut needs to be 

orthogonal to the past channel outputs yt_1. This is intuitive since to ensure fastest transmis­

sion, the transmitter should not transmit any information that the receiver has obtained, thus 

the transmitter wants to remove any correlation of yt_1 in ut (to this aim, the transmitter has 

to access the channel outputs through feedback). 

Proposition 5. In system (4-55), for any 0 < r < t, it holds that Eittyr = 0. 

Proof: See Appendix B.l. I 
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4.6 Infinite horizon: Asymptotic behavior of the system 

By far we have completed our analysis in finite-horizon. We have shown that the optimal 

design of encoder and decoder must contain a Kalman filter, and connected the feedback com­

munication problem to an estimation problem and a control problem. Below, we consider the 

steady-state communication problem, by studying the limiting behavior (T going to infinity) 

of the finite-horizon solution while fixing the encoder dimension to be (n + 1). 

4.6.1 Convergence to steady-state 

The time-varying Kalman filter in (4.58) converges to a steady-state, namely (4.58) is 

stabilized in closed-loop, Ut, et, and yt will converge to steady-state distributions, and Et, Lt, 

Gt(A, C), Gt, and Keit will converge to their steady-state values. That is, asymptotically (4.58) 

becomes an LTI system 

r Xt+l = (A-&C)X,-iJ\% = AXt-.Let 

steady-state: < et = CX< + Nt (4.71) 

Ut = BXt, 

where l:=§F' (o2) 

Ke = CSC' + 1, and S is the unique stabilizing solution to the DARE 

s = asa'-§^t- <4-73> 

This LTI system is easy to analyze (e.g., it allows transfer function based study) and to 

implement. For instance, the MEC of an LTI system claims that the transfer function from N 

to e is an all-pass function in the form of 

TNe(z) = n ~~—-=7 (4.74) 
f=o z~ai 

where ao, • • • ,afc are the unstable eigenvalues of A or A (noting that F is stable). Note that 

this is  consistent with the whiteness of innovations process {et}.  
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The existence of steady-state of the Kalman filter is proven in the following proposition. 

Notice that (4.58) is a singular Kalman filter since it has no process noise; the convergence of 

such a problem was established in [44]. 

Proposition 6. Consider the Riccati recursion (4-60) and the system (4-58). 

i) Starting from the initial condition given in (4-61), the Riccati recursion (4-60) generates 

a sequence {£4} that converges to with rank (n + 1), the unique stabilizing solution to the 

ii) The time-varying system (4-58) converges to the unique steady-state as given in (4-71). 

Proof: See Appendix B.2. I 

4.6.2 Steady-state quantities 

Now fix (A, C) and let the horizon T in the general coding structure go to infinity. Let 

DI(A) := n-=o H be the degree of instability of A and S^e?271"9) be the spectrum of the 

sensitivity function of system (4.71) (cf. [28]). Then the limiting result of Proposition 4 is 

summarized in the next proposition. 

Proposition 7. Consider the general coding structure in Fig. 4-3. For any n > 0 and (A, C), 

i) The asymptotic information rate is given by 

Roo,n(A,C) := 

h{e) - - log 2?re 

logDI(A) 

logg(e^)d9 

1 2 

-log(CDC' + l) 
log det 2wt 

r'SS, 2(r+l) 
.. log det MSEpt/T 

-&• 2(T + 1) 
log det CRB W T 

-Th^, 2(r + i) 

(4.75) 
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ii) The average channel input power is given by 

Poo,n(A,C) := E utu'T 
(4.76) 

BED'. 

Remark 9. Proposition 7 links the asymptotic information rate across the channel to the 

entropy rate of the innovations process, to the degree of instability and Bode sensitivity integral 

([28]), to the asymptotic increasing rate of the Fisher information, and to the asymptotic 

decay rate of MSE and of CRB. Recall that the Bode sensitivity integral is the fundamental 

limitation of the disturbance rejection (control) problem, and the asymptotic decay rate of CRB 

is the fundamental limitation of the recursive estimation problem. Hence, the fundamental 

limitations in feedback communication, control, and estimation coincide. 

Remark 10. Proposition 7 implies that the presence of stable eigenvalues in A does not affect 

the rate (see also [28]). Stable eigenvalues do not affect Poo,n(A, C), either, since the initial 

condition response associated with the stable eigenvalues can be tracked with zero power (i.e. 

zero MSE). So, we can achieve C^^ by a sequence of purely unstable (A, C), and hence the 

communication problem is related to the tracking of purely unstable source over a communica­

tion channel ([102, 28]). 

Proof: Proposition 7 leads to that, the limits of the results in Proposition 4 are well 

defined. It also holds that 

where the second equality is due to the Cesaro mean (i.e., if % converges to a, then the average 

of the first k terms converges to a as k goes to infinity), and the last equality follows from the 

definition of entropy rate of a Gaussian process (cf. [16]). 

Now by (4.74), {et} has a flat power spectrum with magnitude DI(A)2. Then Rco.n(A, C) = 

log DI(A). The Bode integral of sensitivity follows from [28]. The other equalities are the direct 

applications of the Cesaro mean to the results in Proposition 4. 1 

log 27T6, 

(4.77) 
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We finally remark that, if we let the Kalman also perform a smoothing operation to obtain 

the optimal estimate CCO,T of XQ, it then holds that I(W;yT) = I(XQ] XQ,T), which follows from 

data processing inequality and that £o,r is sufficient statistics. This further yields that 

that is, the information rate across the channel is also equal to the end-to-end mutual infor­

mation rate. 

4.7 Infinite horizon: Achievability of asymptotic feedback capacity 

In this section, we will prove that Coo.m-i = Coo, leading to the optimality of our en­

coder/decoder design in Section 4.3 in the mutual information sense, and then show that our 

design achieves Coo in the operational sense. 

4.7.1 Asymptotic feedback capacities 

If the noise in the colored Gaussian channel forms a (an asymptotic) stationary process, 

then CT(V) has a finite limit (cf. [60]; the proof utilizes the superadditivity of CT, similar to 

the case of forward communication capacities studied in [43]), which also has the operational 

and information meanings. Precisely, we have 

Lemma 3. For the colored Gaussian noise channel without ISI defined in Section 4-2.1 or for 

the white Gaussian noise channel with ISI defined Section 4-2.2, the infinite-horizon feedback 

capacity given by (4-V is also given by 

Roo,n(A, C) = (4.78) 

Coo — lim Ct , 
T—>oo 

(4.79) 

where Ct is the finite-horizon feedback capacity, and the limit exists and is finite. 

Proof: See Appendix B.3. 

By Lemma 2, the above implies that 

lim CT,T — COO-
T—»oo 

(4.80) 
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4.7.2 The optimal Gauss-Markov signalling strategy and a simplification 

[136] proved that for each input in the form of (4.6), there exists a Gauss-Markov (GM) 

input that yields the same directed information and same input power. The GM input takes 

the form 

ut - d!tsS}t + St, (4.81) 

where dt € Mm is a time-varying gain; {<%} is a zero-mean white Gaussian process and £t is 

independent on Nt_1, u*-1, and yt~l; and ss>t is generated by a Kalman filter 

S s , t  • —  s t  S s , t  

Ss,t+i = Fss,t + LSjt&t (4.82) 

= yt H s S i t ,  

where sS;o - 0, 

QtEStt(H + d'ty + K^G 

Qt := F + Gd't, and ESit := Ess>ts^t is the estimation error covariance of st, satisfying the 

Riccati recursion 

V . = + K?GG> - (4 84)  

If one lets dt = d and = Kg for all t, that is, the input {ut} is a stationary process, 

then the search over all possible d and Kg solves Coo, that is, 

CoCP) = d€imaX6K ±log(l + Ks  + (H + d>)E,(H + <l)') (4.85) 

subject to DARE constraint and power constraint 

v ziv /V I i(Q^s(H+d')'+Ki:G)(QTi3(H+d'Y+K£Gy 
- Q1,SQ + K£G G i+Ks+iH+d'^lH+d')' (486) 

V = d'Tigd + Kg. 

Ls,t := .,(0 .Z L — (4.83) 

We remark that [136] was focused more on the structure of the optimal input distribution and 

capacity computation, instead of designing a coding scheme; how to encode/decode a message 

(rather than using a random coding argument) is not clear from [136]. 
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Now we prove that Kg — 0, namely {£t} vanishes in steady-state. 6 This leads to a further 

simplification of the results in [136]. 

Proposition 8. For the GM input (4-81) to achieve Coo, it must hold that Kg = 0. 

Proof: See Appendix B.4. I 

The vanishing of {£t} in steady-state helps us to show that, our general coding structure 

shown in Fig. 4.3 can achieve Coo, and the encoder dimension needs not be higher than the 

channel dimension, namely to achieve Coo we need A to have at most m unstable eigenvalues, 

as we will see in the next subsection. 

4.7.3 Generality of the general coding structure; finite dimensionality of the op­

timal solution 

In this subsection, we show that the general coding structure is sufficient to achieve mutual 

information Coo- In other words, if we search over all admissible parameters A,C,QT in the 

general coding structure, allowing T to increase to infinity and n to increase to (m — 1), then 

we can obtain Coo• Thus, there is no loss of generality and optimality to consider only the 

general coding structure with encoder dimension no greater than m. 

Definition 3. Consider the general coding structure in Fig. 4-3- Let 

Coo,n := Coo,n{'P)sup lim I(W; yT) (4.87) 
AeE("+1)x(™+1),c,gocT^00 1 + 1 

subject to 

Poo,n := lim 1 EvF'vF < V. (4.88) 
T—>00 1 + 1 

In other words, Coo,n is the infinite-horizon information capacity for a fixed transmitter 

dimension. Note that Coo,n exists and is finite. To see this, note Proposition 7, Coo,m < Coo < 

oo, and the fact that 

Coo.nOP) = sup Roo,n(A,C). (4.89) 
AeR(™+1)x ("+!) ,C,g* (A, C), (4.88) 

The function C00,n('P) also induce P0o,n(7£), the "capacity" in terms of minimum input power 

subject to an information rate constraint. 

6Ks = 0 was also conjectured and numerically verified by Shaohua Yang (personal communication). 
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Proposition 9. Consider the general coding structure in Fig. 4-3. 

i) Coo.n is increasing in n; 

ii) For channel T with order m > 1, Coo,n = Coo for n > m, — 1. 

Proof: See Appendix B.5. I 

This proposition suggests that, to achieve Coo, we may first fix the transmitter dimension 

as (n +1) and let the dynamical system run to time infinity, obtaining C^n, and then increase 

n to (m — 1). The finite dimensionality of the optimal solution is important since it guarantees 

that we can achieve Coo without solving an infinite-dimensional optimization problem. 

4.7.4 Achieving asymptotic feedback capacity 

In this subsection, we prove that our coding scheme achieves Coo in the information sense 

as well as in the operational sense. 

Proposition 10. For the coding scheme described in Theorem 2, R00>n*{A* ,C*) — Coo('P) 

(A*,C*) = P. 

Proof: See Appendix B.6. I 

Proposition 11. The system constructed in Theorem 2 transmits the analog source W ~ 

J\f(0,I) at a rate Coo CP), with MSE distortion D(C00(V)), where D(-) is the distortion-rate 

function. 

Proof: See Appendix B.7. I 

Proposition 12. The system constructed in Theorem 2 transmits a digital message W from 

the transmitter to the receiver at a rate arbitrarily close to Coo CP) with PEt decays doubly 

exponentially. 

Proof: See Appendix B.8. I 

Note that, the coding length needed for a pre-specified performance level can be pre­

determined since E* T can be solved off-line. Besides, because the probability of error decays 

doubly exponentially, it leads to much shorter coding length than forward transmission. 
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4.8 Numerical example 

Here we repeat the numerical example studied in [136]. Consider a third-order channel (i.e. 

m = 3) with 

Z-1 1+0:5z~l-°A*~l. (4.90) 
1 + 0.6z~2 — 0.4z~3 ' 

In state-space, Z"1 is described as (F, G, H, 1) where 

"0 -0.6 0.4" "1" 

F = 1 0 0 G = 0 

0 1 0 0 
(4.91) 

H = [0.5 -1 0.4]. 

Assume the desired communication rate H is 1 bit per channel use. We first solve (4.11) with 

n — m — 1 = 2, and find out n* — 1. That is, C00 is attained when A has two unstable 

eigenvalues. Then we solve (4.11) again with n* = 1, and obtain 

A* = 

L* = 

0 1 

-2 -0.887 

-0.506 -0.225 0.573 0.092 

(4.92) 

-0.327]'. 

This yields the optimal power — 0.743 (or -1.290 dB). Similar computation generates 

Figure 4.9, the curve of against SNR or equivalently V. This curve is identical to that 

in [136]. 

We then use the obtained A*, C*, and L* to construct the optimal communication scheme. 

However, we observe that the optimal communication scheme shown in Fig. 4.2 generates 

unbounded signals {r*} and {ft} due to the instability of A. This is not desirable for the 

simulation purpose, though the scheme in the form of Fig. 4.2 is convenient for the analysis 

purpose. Here, we propose a modification of the scheme, see Fig. 4.10. It is easily verify that 

the system in Fig. 4.10 is T-equivalent to that in Fig. 4.2. As we indicate in Fig. 4.10, the loop 

including the encoder, the channel, and the feedback link is indeed the control setup, which is 

stabilized and hence any signal inside is bounded. Note that the encoder now involves x_i; we 

set X-x := A~1W, leading to XQ := W, the desired value for XQ. 

We report the simulation results using the modified communication scheme with the optimal 
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—— Coo 

- - feedforward capacity // 

V
 

--

SNR (dB) 

Figure 4.9 The feedback capacity Coo and feedforward capacity for channel 
J7 with Z~^ — (1 + 0.5z~x — 0.4Z-2)/(1 + 0.6z-2 — 0.4z~3). 

parameters given in (4.92). Fig. 4.11 (a) shows the convergence of XO,T to XQ, in which 

xq := [—0.2, —0.7]'. Fig. 4.11 (a) also shows the time average of the channel input power, 

which converges to the optimal power P^ = 0.743. To compute the probability of error, we 

let e = 0.2, i.e., the signalling rate is equal to 0.8CQO. We demonstrate that this signalling rate 

is achieved by showing that the simulated probability of error decays to zero, see Fig. 4.11 

(b). Fig. 4.11 (b) also plots the theoretic probability of error computed from (B.50), which 

is almost identical to the simulated curve. In addition, we see that the probability of error 

decays rather fast within 28 channel uses. The fast decay implies that the proposed scheme 

allows shorter coding length and shorter coding delay; here coding delay measures the time 

steps that one has to wait for the message to be decoded at the receiver with small enough 

error probability. 

4.9 Summary 

This chapter is a non-trivial generalization of the perspective of unified information, esti­

mation, and control obtained in the AWGN case in Chapter 3. We presented a coding scheme 

to achieve the asymptotic capacity Coo for a Gaussian channel with feedback. The scheme is 

essentially the Kalman filter algorithm, and its construction involves only a finite dimensional 

optimization problem. We established connections of feedback communication to estimation 
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Figure 4.10 The modified feedback communication scheme. 

and control. We have seen that concepts in estimation theory and control theory, such as 

MMSE, CRB, MEC, etc., are useful in studying a feedback communication system. We also 

verified the results by simulations. 
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Figure 4.11 (a) Convergence of XQ^ to XQ, and convergence of the average 
channel input power, (b) Simulated probability of error and 
theoretic probability of error. 
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CHAPTER 5. TIME-SELECTIVE FADING GAUSSIAN CHANNELS 

WITH CHANNEL STATE INFORMATION AND FEEDBACK 

5.1 Introduction 

In this chapter we study time-selective fading Gaussian channels with feedback. The time-

selective fading is usually modeled as Markov chains, and there have been many achievements 

in the study of Markov channels; see e.g. [46, 47, 7, 125, 89, 137] and references therein. [46] 

obtained the capacity of a finite-state Markov channel (FSMC) with known channel transition 

structure but without CSI. [47] solved the capacity of a Markov channel with instantaneous 

CSI at both the transmitter (or encoder) and receiver (or decoder), or at the receiver only. [7] 

investigated the capacity of a Markov channel with possibly imprecise or delayed CSI. [125] 

provided the capacity of an FSMC with CSI delayed at the transmitter side and instantaneous 

at the receiver side (DTRCSI). It also showed that, for a channel with DTRCSI, the access to 

the channel output by the transmitter via delayed feedback does not increase the capacity. [89] 

obtained the delay-constrained capacity for a flat block-fading channel with causal feedback. 

The above papers are mainly focused on Markov channels without ISI, namely the channel 

state at each time is independent of the channel inputs up to that time. For ISI channels with 

output feedback, [137] characterized the capacity and capacity-achieving distribution. 

In this chapter, we present a capacity-achieving communication scheme for an FSMC with 

AWGN, under the assumption of delayed noiseless output feedback and DTRCSI. We consider 

the case where there is no ISI. Although the access to channel outputs by the transmitter 

cannot improve capacity in this scenario (as proven in [125]), we show that the proposed scheme 

utilizing output feedback leads to simpler encoders and decoders, shortens coding delays, and 

leads to doubly exponential decay of the probability of decoding error, while achieving the 

feedback capacity. 

The proposed communication scheme over an FSMC with output feedback is a nontriv-
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ial extension of, first, the optimal feedback scheme over an AWGN channel, and second, the 

optimal forward scheme over an FSMC ([47, 125]). In essence, our optimal feedback commu­

nication design for an FSMC consists of a set of decoupled subsystems in parallel, and the 

subsystems are multiplexed to share the forward channel according to the channel state evolu­

tion. This introduces to the feedback communication system the ability to adapt its operations 

to the channel variation, which is a crucial step towards obtaining the optimal (in the sense 

of achieving the Shannon capacity) feedback communication design for time-varying channels. 

Though the multiplexing idea was widely studied in forward communication ([47, 125]), it has 

not received sufficient attention in the feedback communication literature. In this chapter, we 

show that multiplexing according to channel variation will eventually lead to the optimality 

in feedback communication. However, the presence of (delayed) output feedback considerably 

complicates the multiplexing design: In forward communication, the subsystems are naturally 

decoupled from each other (which greatly simplifies the analysis and design), whereas in feed­

back communication, the decoupling of subsystems needs to be guaranteed through careful 

design. It turns out that in the feedback case, each subsystem needs to be appropriately 

designed to depend on "augmented" channel states, and consequently, our transmitter needs 

to switch among m2 possible sets of parameters in the case of m channel states with one-

step delayed output feedback. Note that this is rather different from the multiplexing design 

in forward communication, whose transmitter switches among m possible sets of parameters 

([47, 125]). In summary, the proposed feedback communication scheme over an FSMC nontriv-

ially combines the Schalkwijk-Kailath feedback design and the forward multiplexing design, 

and is among the first to achieve the feedback capacity by extending the idea of Schalkwijk 

and Kailath. 

On the other hand, the proposed communication scheme is associated with a Markov jump 

linear control system over an FSMC: The achievable rate of the former equals the expected 

open-loop growth rate of the latter if the latter is stabilized in closed-loop, and the optimal 

channel input power of the former corresponds to the MEC design of the latter. Namely, the 

optimality in both systems coincide. As a byproduct, we obtain the solution to the MEC over 

an FSMC. Due to its simplicity, the utilization of control system facilitates our development 

of the main results. Alternatively, we can also associate the communication problem to a 

time-varying Kalman filtering problem, in which the time-varying parameters of the to-be-
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estimated process are known to the estimator. Thus, we see that this study reveals the intrinsic 

connections among the communication problem over a Markov channel with output feedback, 

the estimation problem over the same channel, and the control problem of feedback stabilization 

over the same channel, and it fits into the framework of investigating the interactions among 

information, estimation, and control. 

Our coding design simplifies when the channel states form an i.i.d. process taking a finite 

number of values, which requires only a simple first-order transmitter and receiver. We also 

show that the design extends to the case when the channel states are i.i.d. taking an infinite 

number of values, which includes as special cases the widely used Rayleigh, Rician, Nakagami, 

and Weibull fading channel models. 

In addition to leading to the information theoretic results as described above, our study 

also reveals the confluence of information and control. Particularly, the proposed optimal 

communication system is associated with a Markov jump linear control system over an FSMC 

(cf. e.g. [15] for optimal control of Markov jump linear systems): The achievable communica­

tion rate in the former system equals the expected open-loop growth rate in the latter system 

if the latter is stabilized in closed-loop, and the optimal channel input power of the former 

corresponds to the minimum-energy control (MEC) design of the latter (cf. [67, 28, 73] for 

MEC over time-invariant channels). Thus, the optimality in both systems coincides. Due to 

the simplicity of the associated control system, the utilization of the control based approach 

facilitates our development of the main results; indeed, the design of the multiplexing com­

munication scheme based on augmented channel states can be derived by studying the MEC 

of the Markov jump control system. Alternatively, we can also associate the communication 

problem to a time-varying Kalman filtering problem, in which the time-varying parameters of 

the to-be-estimated process are known to the estimator. This approach may be extended to 

more general scenarios. In summary, this study reveals the intrinsic connections among the 

communication problem over a Markov channel with output feedback, the estimation problem 

over the same channel, and the control problem of feedback stabilization over the same channel, 

and it fits into the framework of investigating the interactions among information, estimation, 

and control. 

This chapter is organized as follows. Section 5.2 introduces the channel model and the 

problem we want to solve. Section 5.3 provides the description of the proposed feedback 
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scheme. This scheme is shown to achieve the capacity in Section 5.4. In Section 5.5 we present 

a numerical example. Finally we summarize this chapter. 

Notations of this chapter: We introduce some special notations in this chapter, to better 

represent vectors and their components, which are extensively used in this chapter. We use 

boldface letter x for a vector, and x^ for the ith element of vector x. Note that (An)m is the 

mth power of An, An is a vector at time n, and is the mth element of vector An. We use 

a[l], o[2], • • • to represent a collection of fixed numbers. 

5.2 Channel Model 

Fig. 5.1 (a) shows an FSMC with AWGN, for short, AFSMC. At time t, this discrete-time 

channel TC is described as 

H : yt = Stut + Nt, for t = 0,1,2, • • •, (5.1) 

where ut is the channel input, St is the channel state, Nt is the channel noise, and yt is the 

channel output. These variables are real-valued. The noise {Nt} is independent Gaussian with 

zero mean and unit variance. The channel state St is independent of the channel input u^1 

and output T/Q-1 when conditioned on the previous states. Furthermore, {St} is a stationary, 

irreducible, aperiodic, finite-state homogeneous Markov chain and hence is ergodic. The one-

step transition probability is 

Pij := Pr(5t = s[7]|<St-1 = s[i]), for t  =  0,1,2 ,  •  •  • ,  

where i , j  =  1,2, • • • ,m; m is the number of states of the Markov chain; and s[i] is a fixed 

number for each i. Assume that s[i] 7^ s[j] if i ^ j. Note that s[z] denotes one of the m 

states of the Markov chain, and also represents the associated channel gain if the channel is in 

that state. Denote the stationary distribution vector of the Markov chain (which by ergodicity 

exists and is unique) as tt [tt[1], tt[2], • • •, 7r[m]]. 

Definition 4. i) Define the set of all possible channel state sequences {St} as Ù, i.e., 

0  : =  { { S t } } .  (5.2) 
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ii) Define the set of all possible channel state sequences Sf as Sit, ie., 

fit := {S1} . (5.3) 

Hi) Define the typical set of sequences {St} as 

VLtyp '•= s {St} 
t + 1 

71-[j] and 
n(j,l,t) 

Pj l  as t —> oo (5.4) 

where for a given channel state sequence {St}, n(j,l,t) is the number of transitions from 

channel state s[j] to channel state s[Z] wp to time t; and n(j,t) X}z=i nC?> M)- 1 Each 

sequence in Qtyp w called a typical sequence. 

By ergodicity of {St}, it holds that Pr(fZryp) = l- Hereafter, by "with probability one" 

we mean "for every channel state sequence {St} € FItyp" or "for every typical sequence". 

ut 

-1 

decoder encoder channel T-L 

(a) (b) 

Figure 5.1 (a) An AFSMC 7i. (b) An AFSMC with DTRCSI and output 
feedback. 

We mainly focus on the case of one-step-delayed transmitter-side and instantaneous receiver-

side CSI, denoted DTRCSI. See Appendix C.7 for the multi-step delay case. We also allow the 

transmitter to have access to the one-step-delayed channel outputs, i.e., the receiver at time 

t having observed yl will compute vt (depending only on yt) and feed back vt along with St 

to the transmitter with one step delay. In other words, the channel input ut can depend on 

S4-1 and v1^1. See Fig. 5.1 (b). Note that the above defined AFSMC has a discrete channel 

state but continuous channel input, noise, and output (in contrast to the discreteness of FSMC 

inputs and outputs in [46, 47, 7, 125, 89, 137], with the notable exception of some parts in 

1 To simplify notations, we do not specify the dependency ofn(j,l,t) on the given sequence {&} here. 
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[125]). This channel may be used in modeling the following cases and their generalizations. 

For one, the channel is subject to both erasure (i.e. discrete channel states) and AWGN (i.e. 

continuous noise), and the erasures may exhibit either independence or certain time correlation 

(e.g. forming a 2-state Markov chain). The erasure in this case may be due to some environ­

mental changes (such as buffer overflows) and is likely to exhibit certain time correlation (e.g. 

forming a 2-state Markov chain). For another, a channel is subject to bursty noises with dif­

ferent noise variances, and the occurrence of bursty noises forms a finite-state Markov chain. 

The well-known Gilbert-Elliot channel with AWGN falls into this category. We remark that 

the assumption on the instantaneous, prefect CSI at the receiver side, though often assumed 

in the literature (see [47, 120, 125], etc.), is not quite realistic (especially in the fast fading 

case); we employ this assumption in order to simplify the analysis and to gain some conceptual 

understandings of feedback Markov channel problems. A study taking into consideration of 

the imperfect CSI will be subject to future work, and our study based on perfect CSI may be 

found useful in that study. 

For an AFSMC with DTRCSI and output feedback, its capacity subject to the average 

channel input power constraint 

EUu2 < V (5.5) 

is given by 

C = r,,:E^Sl)<p5Bs"s»'Iog(1 + (s'«»2r<s*»- <5'6> 

where St is drawn according to the stationary distribution TT, and F(-) is the power allocation 

function that maps the channel state St to the channel input power r(5t). The above capacity 

formula is obtained by invoking Lemma 2 of [125] (with d—1 and a2 = 1 therein). The optimal 

power allocation, denoted 'y(-), is given by the solution of a set of m equations 2 obtained by 

applying the Kuhn-Tucker condition (see Appendix B in [125]) and is assumed given throughout 

this chapter. The objective of the chapter is to design a transmitter and receiver to achieve 

the capacity given in (5.6) for an AFSMC with DTRCSI and output feedback. 

2The equations are not linear but the nonlinearity involves fractions only. Hence they can be easily solved 
numerically. 
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5.3 The proposed feedback communication scheme 

In this section, we propose a communication scheme for an AFSMC with DTRCSI and 

output feedback. After a brief description of the main idea of our design, we introduce the 

communication scheme and its dynamics, followed by a choice of parameters for the proposed 

setup. We then explain the encoding and decoding methods. This scheme will be shown to be 

capacity-achieving in Section 5.4. 

5.3.1 General description of the proposed scheme 

We present an informal overview of the proposed scheme before we going into the technical 

details. In short, the proposed design can be viewed as one that multiplexes a set of subsystems 

with feedback, each of which uses an augmented channel state. In the degenerated case that 

the channel is not time-varying, each subsystem simplifies to the one described in previous 

chapter for AWGN channels. 

Suppose that the Markov channel Ti. has m states. Then our scheme consists of m sub­

systems (each of which is associated with one channel state) sharing the common channel 7i. 

Represent each to-be-transmitted message as an m-dimensional codeword which contains m 

sub-codewords, and the m sub-codewords uniquely determines the message. Then let each 

subsystem be associated with one and only one sub-codeword (see Sec. 5.3.8 and Fig. 5.6). At 

each time epoch, one and only one subsystem is selected to use the forward channel to send 

its sub-codeword, whereas all other subsystems do not use the channel. 

Note that we would like the sub-codewords to be communicated independently from each 

other, which can be ensured if the m subsystems are decoupled. (Recall that the m subsystems 

in [47,125] are naturally decoupled.) We can show that the decoupling is possible if our encoder 

makes use of the augmented channel state, which contains two previous channel states, but 

impossible (except for the degenerated case that {St} is i.i.d.) if the transmitter only uses the 

immediate previous channel state. To see this, observe that the transmitter at time t does not 

have access to St, due to the delay in the feedback link. Therefore, the transmitter cannot 

choose the subsystem associated with St to use the forward channel at time i; instead, if the 

transmitter chooses the subsystem associated with St-1 to use the forward channel at time t, 

then the channel output yt depends on both St-1 and St- It turns out that the receiver needs 

to use the augmented channel state for decoupling, and hence that the transmitter needs to 
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use augmented channel state. As we remarked in Section 4.1, this would require a design that 

is not a trivial extension of the optimal communication design for feedback AWGN channels or 

of the optimal multiplexing design for forward FSMCs. Note that state augmentation is widely 

used for control systems with delay. See Sec. 5.3.4 for the details regarding the decoupling of 

subsystems. 

After we ensure the decoupling, the m sub-codewords are thus multiplexed together at the 

transmitter, and demultiplexed at the receiver, in a mutually independent fashion, namely each 

sub-codeword is transmitted without the interference from other sub-codewords. The original 

message would be successfully recovered if all m sub-codewords are successfully recovered. 

Therefore, the average rate of our scheme is the weighted sum of the rates for the subsystems, 

with the weights being the probabilities that the subsystems are selected to use the forward 

channel. Beside, the decoupling and the MEC design (see Sec. 5.3.5) ensures that the channel 

input power at time t depends on (t — 1) fade only, and the power of the ith subsystem is 

designed to converge to 7(s[i]), which would result in that the average power converges to 

the weighted sum of of 7(5[i]), the optimal power (see Appendix C.4). To summarize, each 

subsystem achieves its Shannon limit by solving the corresponding MEC problem, and the 

scheme achieves the Markov channel capacity. 

The rest of the section is organized as follows. In Section 5.3.2, we describe the commu­

nication system, i.e. the dynamics of the encoder and decoder. In 5.3.3, we specify a choice 

of parameters for the proposed design. We then show that this choice leads to decoupling of 

sub-systems in Sec. 5.3.4. In Sec. 5.3.5, we show briefly how we derive the proposed scheme 

from the MEC problem. Finally, we introduce the encoding and decoding methods, probability 

of decoding errors, and achievable rates. 

5.3.2 Coding scheme 

Fig. 5.2 shows the proposed communication scheme. In this figure we identify the encoder, 

the channel H, and the decoder. We call xt 6 Mm the encoder state, with xq as the initial 

condition. We call XQJ G Rm the decoder estimate, which is an estimate of XQ at time t. 

Parameters A G Rmxm, L G Rm, and c G Rm depend causally on the channel states, and will 

be chosen to reflect the adaptation of the communication strategy to the channel variation. 

Since this chapter, we start from the "modified" coding scheme that is numerically stable, 
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rather than from the one obtained directly from the Kalman filtering system. This leads to 

slight change of some notations. 

decoder 

— A(Si_2, St-l) 

encoder 

yt-i 

control setup 

Figure 5.2 The communication scheme and the control setup. 

At time t, t > 0, the system generates signals according to the following dynamics in the 

listed order: 

xt = A(St_2, St-i)xt-i — L(St-2, St-i)yt-i 

ut = c [St—i)xt 

% = + M 
t 

xo,t = ào,t-i + JJ AiSj-!, Sj)~1L(St-i,St)yt, 
j = o  

where X-\ := XQ, y_i := 0, and £q,-i := 0. The above recursions will generate a sequence of 

receiver estimates {xo,t} that converges to Xq, as we will prove in the next section. We can 

rewrite the dynamics of the transmitter state xt as 

xt = Aci(St-2, St-i)xt-i — L(St-2> St-i)Nt-\, (5.8) 

where 

yLd(&-2, %_i) := A(%_2, %_i) - &_1&(,%_2, ̂ _iX(^_2) (5.9) 

is the closed-loop matrix for generating Xt- Note that (5.8) and (5.9) specifies a control system, 

referred to as the control setup, in which we want to minimize the power of u, namely the 
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channel input power, by designing L for the given A and c. This is an MEC problem over a 

Markov channel, whose solution leads to power efficiency of the proposed scheme and eventually 

the capacity-achieving property, as we will see in the rest of the chapter. We also remark that 

the somewhat non-intuitive operations (5.7) in the communication scheme are deduced as a 

rewrite of the MEC of the control setup (5.8); see Section 5.3.5 for details. 

5.3.3 Choice of parameters 

Given any V > 0, we choose the parameters in the communication setup as follows. Let 

7(-) be the optimal power allocation function computed from [125]. Supposing at time (t — 2) 

the channel state S,_2 = s[j] for some j, we define 

v4(&_2,,%_i) :=diag([l,.",l,a(%-2,^-i),l,-",!]) eE™*™ 

Z(5,_2,2,_i) :=[0,...,0,6(&_2,%_i),0,...,0]' €R™ 

c(&_2) == [0, - ' , 0, c(&_2), 0, - - -, 0]' E 

where a(St-2, St-i) is the (j, j)th element of A(St~2, St-i), given by 

0(^-2,54-1) := -\/^{St-2){St-i)2 + 1 ; 

b(St-2, St-1) is the jth element of L(S t-2, St-1), given by 

c O \ 7(5,—2)5,—1 7(5,—2)5,—1 
(6,-2,6,-1) =_ ^_^^2 + i-a(g,_2,5,_i) 

(«(^-2' %-l) - ' 

where the last equality is also true for the case St-1 = 0 if we treat 0/0 = 0; and c(S,_2) is 

the jth element of c(S,_2), given by 

c(5",_2) := 1. (5.13) 

Whenever St, t < 0, is encountered, it is treated as s[l]. Note that a(5,_2,S,_i) = 1 implies 

that St-1 — 0 or 7(6^,-2) = 0. Note also that the above choice uses the augmented channel 

state (St-2,5,_i) as we have mentioned in Section 5.3.1. 

(5.10) 

(5.11) 

(5.12) 
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5.3.4 Decoupling of states and MEC 

To see that the proposed communication system is decoupled under the above choice of 

parameters, let us assume St-2 = s\j]. We then obtain that Aci(St-2, St-i) in (5.9) is a 

diagonal matrix with (i, i)th element being 1 if i ^ j, and being 

a(St-2, St-i) + St-ib(St-2, St_i)c(St-2) — a(St-2, St-i) 1 (5.14) 

if % = j. Hence, we have 

x. (0 _ 0(,%_2,,%_i)-l%gi - 6(St_2,%_l)^_] 

xt-1 

if i = j 

if i + j; 
(5.15) 

or equivalently in matrix form (noticing that Aci(St-2, St-1) = A(St-2, St_i) 1) 

xt = A(St-2, St-i) 1xt-\ - L(St~2, St-i)Nt. •l- (5.16) 

More explicitly, 

,d) 

,0) 

„(m) 

1 

0 

0 

0 

0 0 

1 0 

0 0 

0 0 

0  0  a{St-2i St-i) 1  • • •  0  

0 

0 

1 0 

0 1 

x. U) 
t-i 

4-1 

+ 

0 

b(St-2, St-i) 

0 

Nt-t-1 

(5.17) 

This illustrates that, conditioned on the channel state sequence {St}, the evolution of subsystem 

of x[l> does not involve for any I ^ i. 

Therefore, associated with each channel state s[j], there is one subsystem with transmitter 

state x^\ and the sub-codeword is transmitted independently from other sub-codewords 

throughout, which shows the decoupling of subsystems (see Appendix C.2 for the proof of 

decoupling) ; note that the decoupling is ensured by more complicated design than in the 

forward communication case. See Fig. 5.3 for the timeline of subsystems' operations. Suppose 
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St-2 — s[j] and St-1 = s[l}. Then at time t, the jth transmitter state x^}x is updated 

to a new value (by using the feedback channel), whereas all other transmitter states 

hold their previous values. In the meantime, the ith receiver estimate ccq t-i is updated to a 

new value £QJ (by using the forward channel), whereas all other decoder estimates hold their 

previous values. Thus, for each subsystem, typically it goes through this cycle of operations: 

holding - updating receiver estimate - updating transmitter state - holding. The transition 

is triggered by the channel state one step before, and any two subsystems do not perform 

the same updating operation at the same time. That is, our design ensures mutually exclusive 

updates among subsystems and hence interaction-free evolution for subsystems. This simplifies 

the encoding/decoding processes. 

t  —  2  t - 1  t  t + 1 t - 1-2 
St-2 = sb'] St_! — s[Z] St — s[i] St — s[n] «Sj+i = s[p] 

' » • ' ' , 

xt
(i\ updates updates xt+i updates 

to to to 
£o,t-i updates x^t updates ®o"+i updates 
t° Xq j to £g j+1 to $0^+2 

Figure 5.3 Timeline of the operations. The first row lists the time instants, 
and the second lists the channel states. How the encoder states 
and the decoder estimates are updated is shown below the time 
axis. For each time instant, the encoder states and decoder 
estimates not listed here hold their past values. 

As a final remark to this subsection, we note that, in Fig. 5.3, though at time (t — 1), the 

receiver has St-1, it does not update the subsystem associated with St-1, namely Xgj-i remains 

as XQJ_2- This is because ut~ i is associated with St-2 (as Cf_2 chose subsystem associated with 

St-2 to use the forward channel at time (t— 1)). This in turn implies that to ensure decoupling, 

the receiver at time (t — 1) should defer the update of the subsystem associated with St-i until 

time t. 

5.3.5 Minimum-energy control 

Equations (5.11)-(5.13) also ensure that, at the time instant when the subsystem for is 

activated, the closed-loop eigenvalue of this subsystem locates at the reciprocal of the open-loop 
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eigenvalue (see (5.14), in which the open-loop eigenvalue is a(St-2, St-i) and the closed-loop 

one is its reciprocal), which resembles the MEC design for a Gaussian channel without fading 

[67]. The resulting (minimum) power of ut, namely the channel input power, will be computed 

in Proposition 15. In this subsection, we brief discuss the MEC problem. 

Consider the MEC of the Markov jump linear system shown in Fig. 5.4 (a), in which 

A(St~i,St) and c(St-1) are given, and L is the controller to be designed to ensure the closed-

loop stability and minimum power of u. The discrete state SL is known to the controller at 

time t. In the special case that St is constant throughout, this reduces to the MEC of an LTI 

system. If A and C are given according to (5.10), (5.11), and (5.13), then L according to (5.10) 

and (5.12) is the optimal choice. To see this, note that the subsystems are decoupled, so each 

subsystem acts like an LTI system. Since each subsystem implements the MEC design, it can 

be shown that the composite system also minimizes the power of u. 

If instead, the choice of A and C is not given but a constraint of A is present, i.e., the 

average growth rate of the open-loop system is fixed, then it can be shown that A and C 

given in (5.10), (5.11), and (5.13) will lead to the minimum power. Detail computation is 

omitted here, but the validity will become clear by combining 1) the relation between the 

control problem and the communication problem shown below and 2) the optimality of the 

communication problem established in the next section. 

In Fig. 5.4 (b) we illustrate how we obtain the optimal communication scheme of Fig. 5.2 

from the MEC. By linearity, it holds that 

xt = xt + xt, (5.18) 

where Xt is the zero-input response (due to initial condition XQ), and Xt is the zero-state 

response (due to external input y^)-, this is shown in the left part of Fig. 5.4 (b). Note that 

—Xt can be generated from as indicated in the right part of Fig. 5.4 (b). Since xt is bounded 

and xt grows approximately exponentially, it holds that 

« -*t. (5.19) 

Therefore, the right part can approximate xt and hence Xq without actually knowing Xq before­

hand. Then some block diagram transformations lead to the proposed communication scheme 



www.manaraa.com

97 

in Fig. 5.2 which can be used to convey XQ. 

Ut 
- L  

(a) 

Ut 
-L 

* 
1I, 

(b) 

Figure 5.4 (a) MEC of the Markov jump linear system, (b) Intermediate 
step towards the optimal communication scheme. 

5.3.6 Kalman filtering and state augmentation 

In this subsection, we present the Kalman filtering system associated with the feedback 

coding system, and illustrate the state augmentation technique. 

Fig. 5.5 (a) shows a time-varying process to be estimated. Let us assume that the c(St-i) 

vector is forced to use delayed state St-1- This delay can be "eliminated" by the state aug­

mentation technique, widely used in estimation and control for systems involving delay; see 

e.g. [10]. Define the augmented state as 

(5.20) 

then the Markov chain St with number of states being m induces a Markov chain St with 
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number of states being m2. Let 

ft_ = [i O]S,+M {62i) 

c(S t)  = c(S t~ 1).  

Then the process involves no delay constraint. We can then easily design the time-varying 

Kalman filter for this process; note that the Kalman filtering algorithm works for time-varying 

case as long as the time-varying parameters are known to the Kalman filter causally. It is 

then relatively simple to figure out the structure of A and c to lead to a decoupled problem, 

as we demonstrated for the MEC problem. After we obtain the Kalman filtering system, we 

can easily obtain Kalman filter based coding system and finally the numerically stable coding 

system described in previous subsections. 

z 

(a) 

Kalman filter 

z 

(b) 

Figure 5.5 (a) A process needed to be estimated. The c(St- i)  vector is 
forced to use delayed state St-1- (b) A process needed to be 
estimated and the Kalman filter. After state augmentation, no 
delay is involved. 
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5.3.7 Assumptions 

In what follows, the choice of parameters according to (5.10)-(5.13) and Assumptions Al) 

and A2) are assumed unless otherwise specified: 

Al) 7(s[j]) > 0 for each j, i.e., each state s[j] is assigned with a nonzero power; 

A2) s[7] 7^ 0 for each j, i.e., the channel contains no erasure. 

We adopt these assumptions only for convenience; our main results hold true if the assump­

tions do not hold. In fact, when Al and A2 hold, we have a(s[j], s[l}) > 1 and that the mapping 

from to in (5.15) is always "strictly contractive", which would lead to a convergence 

result easily and simplify our development of the main results. However, if Al does not hold, 

then whenever the subsystem assigned with zero power is activated, the transmitter does not 

transmit any information; if A2 does not hold, then whenever the channel state is an erasure, 

the transmitted signal does not reach the receiver. In either case, the receiver receives only an 

AWGN and no information (apart from the CSI) flows across either the forward channel or the 

feedback channel. At those moments when no information flows, the transmitter state, receiver 

state, and the receiver estimate remain as the immediate previous moments, which is different 

from other moments. More specifically, there is a positive probability that the entire transmit­

ter state x is completely "frozen" at some time t, namely, we may have A(St-2, St-1) = I and 

L(St-2, St-x) = 0 for some t and hence xL = Xt-1, which is not "strictly contractive" at this 

moment. This would require a couple of extra, minor steps in establishing the (same) main 

results. For convenience, we would like to develop the main results under Al and A2 in the 

main body of the chapter, and defer the description of the extra steps in Appendix C.5. 

We also note that A2 can be directly verified from the given channel model, and Al can 

also be easily verified by 1) checking the optimal solution of 7(s[i]) computed by a numerical 

solver (noting that the decision variables F(s[i]), % — 1, • • •, m, are inside a compact region and 

a number of numerical tools are available); or 2) applying the "complementary slackness" (if 

an inequality constraint holds strictly if and only if its multiplier is zero, namely F(s[i]) > 0 if 

and only if the ith multiplier is zero; cf. [2]) to the optimization problem. 
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5.3.8 Encoding/decoding method 

Define 
m 

â[j] := s[l])^^', for j = 1, • • • ,m (5.22) 

and 
m 

â:=Y[â\j}. (5.23) 
j=i 

Then it holds that à\j] > 1 and ô > 1, since a(s[j], s[Z]) > 1 for each j and I. 

Encoding and decoding 

The proposed communication scheme can also transmit digital messages or analog sources. 

We focus on transmission of digital messages here, and discuss the analog case in Section 5.4.4. 

Fix the coding length to be (T + 1), i.e., we use the channel from time 0 to time T. We 

define B 6 Mm to be the unit hypercube centered at the origin and with each side (denoted 

) being the interval [—|, \}. For any fixed e > 0, and for each j, let B^ be uniformly 

partitioned into \_M^) \ subintervals, where 

:= ôL7'](T+1)(1-e) (5.24) 

and [Mj denotes the largest integer no greater than M. For each T and j, it holds that 

J = (5.25) 
ST 

for some ^ € [1,2). Now B is partitioned into Mt := ITjLi \M^\ sub-hypercubes. Let the 

center of each sub-hypercube represent one of a set of Mt equally likely messages. Call the 

sub-hypercube centers the codewords, the sub-interval centers the sub-codewords, and the set 

of codewords the codebook. 

For encoding, choose a message from the Mt centers, say W, and let xq := W. Then xq 

enters the system (5.7) and generates channel input sequence uT. For decoding, the decoder 

generates x^\, for each j, and then decides the decoded message Wt to be the subinterval 

center closest to £Q,T- See Fig. 5.6 for a simple example of a codebook. 

Once again, we see that the encoding and decoding are fairly simple. In fact, the compu­

tation complexity for the encoding and decoding mainly involves a product of m x m diagonal 
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msg[1] 
msg[2] 
msg[3] 
msg[4] 
msg[5] 
msg[6] 

(4,4) 

i 
"3 

1 
3 

cw[1] 

cw[4] 

cw[2] 

cw[5] 

Bi1) 

cw[3] 

cw[6] 

i 
"A 

-t 
a sub-interval of S^1) 

~V 

Figure 5.6 An example of codebook. 
r(2) 

Assume m = 2, \_Mt « t J — 3, and 
L-M^J — 2. The six messages are represented by the six code­
words. Suppose that message msg[l] is to be conveyed. Then 
codeword cw[l] is to be transmitted, and the sub-codewords are 
Xq1-* = —1/3 and = 1/4. The two sub-codewords are trans­
mitted through two decoupled subsystems. At the receiver side, 
if both sub-codewords are correctly decoded, then the codeword 
cw[l] and hence message msg[l] can be correctly recovered. 

matrices HjLo and grows linearly in (T + 1), where (T + 1) is the number of 

channel uses. 

Signalling rate 

We define the signalling rate as 

1 -, m 

f+T ̂  ̂  TTÏ ̂  ̂  j=i 

if the limit exists. 

Probability of error and achievable rate 

We declare a decoding error if the decoder's decision Wt is not equal to the transmitted 

codeword W. To compute the probability of error PET, we first define the probability of error 
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for the jth sub-codeword conditioned on the channel state sequence ST as 

pe^ |g := Pr (xqJt and are in different subintervals of B^\ST^j . (5.27) 

Since conditioned on ST, x® and evolve independently, we can independently compute 

PErps for each j. We then have that, PEt\s, the probability of error for the message W 

conditioned on the channel state sequence ST, as 

m 

= 1-11(1-^%)- (5-28) 
3=1 

Consequently, the probability of error for decoding W, which averages PEt\s over all possible 

channel state sequences ST, is 

fBr,gPr(^); (5.29) 
srefiT 

recall that fit is defined as the set of all possible channel state sequences of infinite length. We 

remark that, though the above definitions are for some fixed XQ, since the probability of error 

for different Xq shares the same asymptotic behavior 3, it is sufficient to study the probability 

of error for one fixed initial condition XQ. 

We call a signalling rate R, defined in (5.26), achievable if PEt decays to zero as T tends 

to infinity. 

5.4 Achieving capacity of AFSMC 

In this section, we show that the feedback communication scheme proposed in Section 5.3 

along with the parameters given by (5.10)-(5.13) is capacity-achieving, and it leads to doubly 

exponential decay of error probability. Our main result is summarized in Theorem 3. 

Theorem 3. Suppose 7i is any given AFSMC, where the channel state St forms an ergodic 

Markov process and is available instantaneously to the decoder and with one step delay to the 

encoder. Given any V > 0, let -y(-) be the capacity-achieving power allocation that maps the 

channel state St to the channel input power 7(St) and such that ES~TT7(S) < V holds. Then, 

3In fact for t sufficiently large, Xo,t has the form £0,t = $o + At (see (5.43)), where At does not depend on 
xo- Therefore, asymptotically the decoding error does not depend on xo-
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the feedback communication scheme described in Section 5.3, along with the parameters given 

by (5.10)-(5.13) under Assumptions Al) and A2), transmits at a rate arbitrarily close to the 

feedback capacity 

C = log(l + (&+i)%)) = logô (5.30) 

under average input power constraint 

EUu2 < V. (5.31) 

Moreover, asymptotically PEt\$ decays to zero doubly exponentially for any given typical se­

quence {S*} € Qtyp-

Remark 11. Note that for a given channel state sequence {St}, PEt\s may or may not 

decay doubly exponentially. However, if the given sequence {St} is typical, then PEt\s de­

cays doubly exponentially. Since typical sequences form a probability one set, we conclude 

that with probability one, PEt|S decays doubly exponentially; in other words, almost every 

"sample trajectory" of PEt\s decays doubly exponentially. Similar to the AWGN case, doubly 

exponential decay is only possible if an average channel input power constraint is used (cf. 

[134]). It is also worth noting that the average probability of error PEt does not decay doubly 

exponentially, though PEt\s decays doubly exponentially with probability one. The doubly 

exponential statement uses channel state sequences {St} of infinite length, whereas the average 

probability of error PEt uses channel state sequences S* (though t can be very large, it is not 

infinity). 

To prove this theorem, we first compute the achievable rate, and then prove the dou­

bly exponential decay, followed by showing that the power constraint (5.31) is satisfied. See 

Appendix C.l for the proof of C = logo. 

5.4.1 Achievable rate 

To show that the proposed scheme can transmit at a rate arbitrarily close to capacity C, we 

need to prove that, for any e > 0 small enough, the rate (1—e)C is achievable. This development 

is facilitated by considering the control setup. In fact, for an AFSMC, whenever the control 

setup in Fig. 5.4 (a) is open-loop unstable but closed-loop stabilized, the communication 
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system in Fig. 5.2 achieves a rate determined by the growth rate of the open-loop, similar to 

the case of Gaussian channels without time-selective fading [28]. 

Our choice of parameters in Section 5.3.3 leads to that,the open-loop of the control setup is 

unstable. The average rate of growth for this unstable system, defined as Estist+1 log A(St, St+1), 

is log â (following the derivation in Appendix C.l). This is exactly the maximum achievable rate 

for the proposed communication system. Below, we show that the control setup is stabilized in 

closed-loop, based on which we prove the achievable rate. Note that the stability of the control 

setup is in the sense of, first, the boundedness and convergence to zero of the first moment Ext, 

and second, the boundedness of the variance-covariance matrix Et EXtx't — ExtExJ, both 

conditioned on a given channel state sequence {St}. Finally, note that if one fixes the choice of 

A(St, St+i), then the rate is fixed, and thus the choice of L(St, St+i) is to ensure the stability 

of the closed-loop as well as the minimum input power, which is exactly an MEC problem. 

We introduce the following notation. Fix a sequence {St}. Recalling that if ST_i = s[j] 

and ST = s[Z], we have 

A(ST_i,St)-1 = diag ([L, • • •, 1, a(s[j], s[Z])-1,1, • • •, L]) , (5.32) 

we can then obtain, for any t, 

JJ -4(',S'r_i, S,)  1 = diag n aHi],s[i])-<w>, • • •, n«(»M, «if»-* 
r=0 \ ll=l 1=1 

:= diag ( <^m) ) := $t, 

(5.33) 

where and $t are defined in an obvious way. 

Lemma 4. Assume the hypotheses of Theorem 3, and fix a channel state sequence {St} in f2. 

Then for the control setup (5.8), 

i) <E>t 18 the state transition matrix, namely the response due to initial condition Xq is 

Xt+i — 0- For every j = 1, • • •, m, it holds that 0 < (j>P < 1 for any t, and that 

Km -, 0 if {%} € Oryp; (5.34) —r V IL \Uff C Ji'i' 

„(j)| / TT.-O) / |~0) I ii) For any fixed initial condition XQ, it holds that — |xq \ < E x\ ' < \XQ ' \ for any t, and 
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that 

lim Ex t  —> 0 if {%} 6 £ITYP] (5.35) 

Hi) For any XQ, Et := E(xt — Ext)(xt — EXT)'  is a diagonal matrix, i.e., the components of 

Xt are mutually independent, and there exist c and c such that 

0 < c < < c < oo (5.36) 

for any t, where is the (j,j)th element of Et. 

Proof: See Appendix C.2. I 

Now we can use the stability of the control setup to establish the reliable communication 

across the channel. Note that the stability of the control setup implies that the communication 

scheme does not involve unbounded signals, as claimed in Section 5.1. 

Proposition 13. Assume the hypotheses of Theorem 3. Then the communication system 

reliably transmits at rate 

B=( l -e ) l ogô=( l -e )C ,  (5 .37 )  

for any given e > 0. 

Proof: To establish the achievable rate, we first compute the signalling rate, followed 

by proving that the error probability goes to zero, which implies that the signalling rate is 

achievable. 

Signalling rate 

For any {St}  in CITYP, it holds that 

R Urn 
T-oo t+ 1 

t + i r + i J 

Ef=,log«b1(3'+1K1-<) (5.38) 

r1^-—m 
m 

(1 -c)^]logô[j] 
3=1 

(1 - e) logô. 

Probability of error 
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The proof of vanishing probability of error is essentially an asymptotic equi-partition (AEP) 

based argument (cf. [16]). Let us define 

a < yu and 
n(j,l,t) 

< ̂ } •  (5.39) 

where /i> 0. From AEP or the Weak Law of Large Numbers, it holds that 

Pr(fi^) -• 1 (5.40) 

as t tends to infinity. Then Q,t is partitioned into two subsets: and Our goal is to 

show that the probability of error PEt\s satisfies 

PET\S < k(T) (5.41) 

for some vanishing function k(-) > 0 which is independent of T and ST, as long as ST G 

This would lead to vanishing probability of error PEt- More precisely, note that 

PEt := j2 pe t l s-pv(s t) 
sTeaT 

= PE t\s~P<ST)+ £ P E t\s Pr(ST) 
STen: (5.42) 

< «mPr(g^)+ Pr(g^) 
sTe sTen$ 

< «(T)+Pr(0^), 

where we have used that k > 0 and is independent of ST, Y2sTeQT ^ ^X(ST) < 1, and PET\s < 

1. Therefore, as T increases, the averaged probability of error PEt would decay to zero. 

To show that PEt\s decays to zero on f2y]jU as T goes to infinity, we may first investigate 

the behavior of PE^S on f2r ]A1. Fix any channel state sequence ST and initial condition Xq. 

It is straightforward to compute that 

t  
Xo,t  — Xq 11 -14(57-—i, St)  ®t+l = Xq • (5.43) 

r=0 

Because the noise is zero mean i.i.d. Gaussian, Xt+\ is Gaussian with distribution A/*(Ext+i, Ef+i), 
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if conditioned on 5ê and xq. Then notice that Ezi+i — $ txo- Therefore, xqj is an m-variate 

Gaussian distributed as 

W (zo - , (5.44) 

and particularly, for each j, XQ\ is a univariate Gaussian distributed as 

(5.45) 

We now assume without loss of generality that XQ^ is the center of the ith subinterval of 

B^. See Fig. 5.7. We can thus derive the following expression of PE^S: 

= Q 

= Q 

= Q 

0.5/LM^J+4j)(^))2 \ 

0.5 

0.5^') 
sW(T+i)(i_.)fwy^r ̂  

+ Q 0.5 

+ 

T+l 

+ Q 
0.5^) 

(5.46) 

(41) =*! 

L_ 
x 

ith subinterval, length 

Figure 5.7 The location of xffl in a subinterval of B^ and the distribution 

of XQJ,, with mean XQ^ — {(j>J))2x^ and variance (cj>!p)2Yij,^+1. 

Notice that 

(n£i a(s\3},4l\)'U]p'')<T+1}{1~" nil "(sbl^l'l)-™0''" 

(n£i «(*1, s[i]),iti'''T,)r+1, 
(5.47) 

where 

d(j,l,T) := (1 - e)Tr[j]pji - (5.48) 
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b:]Pjh (5.49) 

Since 
n(j,l,T) _ n(j, l,T) n(j,T) 
T+l n(j,T) T + l ~*7r 

it holds that for sufficiently large T and sufficiently small /z, d(j,l,T) is non-positive for any 

S? in 

Let a := min;o(s[j],s[Z]) > 1 and a := ae > 1. It then follows from (5.47), (5.48), and 

d(j, l,T) < 0 that 

\ T+l 

= a(T+l)(l-e)7r[j']-nO',T) 

& 
-en(j,T)+(T+l)(l-e) 

-nO',r)+(T+l)(i-l) 

(5.50) 

Therefore, 

:0') _0')A0') 
QTA := Q I ^—^= + 

tti) 
< Q I fa',T)+(T+l)(i-l)(.[,'H!Si?) + »OVT''| = Q | 

2\/4iI V4li. 

where 

and 

:= n(j, T) + (T + 1) (1 - l) (*\j\ - ̂ ^) (5.51) 

# = ,og„ \ . (,52) 

2VE™1 

For ^ sufficiently small and T sufficiently large, it holds that 

(5-53) 

by € [1,2), XQ7^ e (—1,1), 4$ 6 (0,1], and S^+i e (c, c) for any j, T, and ST, one 

can easily show that is uniformly bounded, namely (r € (C2, Ci ) where the bounds are 
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independent of j, T, XQ, and ST. Also for T sufficiently large, it holds that 

l - i  

Pick /j, sufficiently small such that 

^l-nG'T) 
T + l  

< I 1 ) yU. (5.54) 
e 

Mi] - ( - - 1 ) ^ > <r (5.55) 
e 

for some a > 0 and for all j = 1,2, • • •, m. Note that such ji and a exist since m is finite. This 

would yield that, for T large enough, t]t > (T + 1 )cr. Consequently, (rjr + (t) goes to infinity 

and QT,I vanishes. More precisely, 

Qr,i < Q(a^+^'+^i). (5.56) 

Similarly, 

qt2 ,= Q ( °-54j) xo UT ) 

for some Ç2-

Letting ( := max{Ci;Ç2}, we have that 

f = Qr,i + 0T.2 < 2Q(a^+i)'-K). (5.58) 

vanishes. Then invoking the union bound 

m m 

fBrjg = 1 - 11(1 - ^ Z < 2mQ(wM"+Ç), (5.59) 
j=i j=i 

we deduce that PEt\s would converge to zero on for sufficiently small /i. Thus we prove 

that PEt decays to zero, i.e., rate R is achievable. 4 • 

4We may also employ a modified decoding after we obtain XO.T, by letting WT be the subinterval center 
closest to (I — (5>T)2)-1$O,T- This removes the estimate bias and hence the asymptotic behavior analysis of the 
communication scheme remains the same. 
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5.4.2 Doubly exponential decay of probability of error 

Proposition 14. Assume the hypotheses of Theorem 3. Then 

i) For sufficiently large T, for any j and {St} e SItyp, 

PEt\S - exP {_ exp(/32(r + 1) + o(T))} (5.60) 

for some (3i, @2 > 0, where o(T) denotes the terms with lower order than T, namely o(T)/T 

vanishes as T tends to infinity; 

ii) For any j and {St} 6 Qtyp> the decay exponent for PE^S is 

e0) := I™ log(log(—^-)) - 2elog(â[j]), (5.61) 
X—>oo 1 + i PF!U1 

T\S 

and the decay exponent for PET\g is 

e := Jim ^F~Z7 log(log(^—)) = mPe(j) = 2elogo, (5.62) 
T—> oo 1 + 1 rJhj' |5 j 

where a := min^ a[j]. 

Remark 12. This proposition claims that, for each sub-message x$ \ essentially its probabil­

ity of error decays doubly exponentially, and hence PE^g decays doubly exponentially with 

respect to T for large enough T, provided that we exclude a set of {St} that would occur with 

zero probability and on which only zero communication rate can be achieved. This notion of 

decay of error probability is stronger than what we have proven in Proposition 13 regarding the 

probability of error averaged over all finite-length typical sequences ST, analogue with that the 

Strong Law of Large Numbers is stronger than the Weak Law of Large Numbers. The decay 

exponent of PET\S is the smallest (slowest) decay exponent of PE^S among all j. When the 

channel has no fading, i.e., m = 1 and a — a(s[j],s[Z]) for all j and I, the decay exponent 

becomes e = 2eloga = 2(C — R), and we recover the decay exponent obtained in [107, 106]. 

Proof:  See Appendix C.3. 
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5.4.3 Power computation 

Proposition 15. Assume the hypotheses of Theorem 3. Then the average channel input power 

is 

Eu2 = Y2 7rH7(s'[î]), (5.63) 
1=1 

and hence satisfies power constraint (5.31). 

Proof:  See Appendix C.4. • 

Combining the results in Propositions 13-15, we have completed the proof for Theorem 3. 

Noting that the entropy rate of the channel output is indeed the transmission rate, we also 

conclude that we obtain the MEC design over an AFSMC with an entropy rate constraint. 

5.4.4 Transmission of Gaussian random vector 

With some modifications we can transmit a Gaussian random vector over the AFSMC, 

in parallel with the AWGN channel case. Let us use the same parameters given in (5.10)-

(5.13) and xq ~ _A/(0, Vim), and follow the dynamics (5.7). For a given channel state sequence 

{St} € ûyyp, we obtain the MSE distortion as 

MSE(ÂO.T) E(xo - xotx)(xQ - XQit)' = (5>r)2Ea?T+i^T+i' (5.64) 

which, by rate-distortion theory, requires an asymptotic rate to be at least 

2 'prn ^ *pm 

lim . log rr = lim _ log 
T-.CO 2{T +1) |MSE(x0,r)| T->OO 2(T +1) n^i^T^lExr+i^l 

W  _ l i m  i  n . o )  
T—>oo T + _ . ;=i 

® logs, 

- m 

<5-65> 

where (a) follows from the boundedness of Tm and |Ext+ixJ+1|, and (b) follows from a deriva­

tion similar to Appendix C.3. Since logo is the capacity, we conclude that xq is successively 

refined at the capacity rate of the AFSMC. 
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5.4.5 Special case: AWGN i.i.d. fading channel 

Theorem 3 directly applies to the case that {St} forms a discrete i.i.d. process. However, a 

simplified capacity-achieving feedback scheme with a scalar transmitter state exists. Assume 

that the channel state has an i.i.d. distribution given by 

Pr(St = s[i]) = p[i] for t = 0,1, • • •, (5.66) 

where for % = 1,2, • • •, m, p[i] and s[i] are fixed numbers. Given any power budget V > 0, we 

choose the parameters in the communication scheme as 

A(Su-2,S,-i) :=A(SI-J) := VB-I)'? + 1 e M 

£(S<-2,S,_i) :=L(SW) := eR (5-67) 

c(St-2) ~ 1 € E. 

Note that A and c in this design do not require the augmented channel state (St-2, St-1); St-1 

is sufficient. We can show that this design leads to a transmission rate arbitrarily close to the 

capacity (proof skipped for brevity) 

1 m i 
log(l + 3H"P) = -Eg log(l + ̂ P). (5.68) 

i=i 

Note that no power adaptation is needed in the capacity formula and in the proposed scheme. 

Remark 13. We remark that a direct application (without multiplexing) of the ideas in 

[28] does not achieve the Shannon capacity. We conjecture that such a direct application can 

at most achieve the anytime capacity, which is less than the Shannon capacity. In anytime 

information theory [102], tracking a constantly growing unstable source through a channel is 

studied, the information theoretic interpretations are provided, and the fundamental limita­

tions are captured by anytime capacity. In this chapter, by using the multiplexing structure 

that adapts according to the channel state variation, the decoder no longer tracks a constantly 

growing unstable source, but a source that grows faster when the channel is in good state, and 

grows slower when the channel is in bad state, and thus we can achieve the Shannon capacity. 

That is, this adaptation idea is essential to the optimality, and it significantly generalizes the 

ideas used in [102, 117] for an erasure channel. 
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5.4.5.1 AWGN i.i.d. fading channel with infinite channel states 

AWGN i.i.d. fading channels with infinite channel states include many channels as the 

special cases, such as the Rayleigh, Rician, Nakagami, and Weibull fading channels. Here we 

focus on the scenario of real channel state-spaces; the scenario of complex channel state-spaces 

can be studied similarly. Assume that the channel state forms an i.i.d. process with density 

ps(s), where s 6 R. Then the channel capacity is 

Ciid,inf = ^Es~ps log(l + S2V). (5.69) 

Then we construct a coding scheme with a scalar transmitter state as in the finite state-space 

case, using the choice of parameters given in (5.67). As we show in Appendix C.6, this scheme 

achieves the feedback capacity given in (5.69). We point out that the proof makes use of the 

fact that the transmitter can be designed as a scalar system and hence this proof may not be 

directly applicable to Markov channels with infinite states. 

5.5 Numerical example 

Consider a Gilbert-Elliot fading channel with AWGN, i.e. an AFSMC with only two states. 

We simulate the proposed scheme for this channel. Fig. 5.8 shows the simulated PE^S and 

PEt\s for a randomly chosen (typical) {St}, as well as the theoretic PEt\s computed from 

(5.46) and (5.28). We see that the probability of error decays rather fast within 20 channel 

uses. However, the decay of probability of error is not very smooth, caused by instantaneous 

deviations from the typical channel behaviors, though {St} may be typical in the long run. 

This may be improved by considering a "turbo mode" of using larger power at those atypical 

instants, which does not affect the average power constraint (under further investigation) ; see 

[103] for the idea of turbo mode. 

Fig. 5.9 (a) shows the decay of PET,  which averages both the doubly exponential decay 

of error probability for typical sequences and the exponential decay of error probability for 

atypical sequences. 5 These fast decays imply that the proposed scheme allows shorter coding 

5This implies that our error probability averaged over all channel state sequences decays exponentially. 
[103] presented a coding scheme to reduce the decoding errors caused by atypical channel state sequences for 
"streaming" communication. The same idea may be applied here to lead to doubly exponential decay of the 
averaged error probability; this is subject to future research. 
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Figure 5.8 Simulated PE^S, simulated PET\$, and theoretic PET\S. 
s[l] = 2, s[2] = 1, pu = 0.65, P22 — 0.38, p == 3, and e = 0.2 
(i.e. R = 0.8C). 

length and shorter coding delay; here coding delay measures the time steps that one has to 

wait for the message to be decoded at the decoder with small enough error probability. The 

short coding delay is also reflected in Fig. 5.9 (b), where we compare the message and the 

decoded message bit by bit and count how many bits are correctly obtained by the decoder. 

At time T = 24, the channel can transmit 35.8 bits if at each step the capacity C is attained, 

and the simulation shows that on average 34.9 bits are actually correctly decided. 

Therefore, though the availability of output feedback at the encoder does not affect the 

capacity when DTRCSI is available, we have seen that, output feedback can considerably 

simplify the coding design and coding process while achieving the capacity (in contrast to the 

more sophisticated designs to approach the capacity using Turbo codes or LDPC codes, see 

e.g. [101]), and it leads to better performance in terms of probability of error than the forward 

coding schemes in the literature. Recall that turbo codes or LDPC codes need long coding 

lengths of at least several thousands to achieve a decent performance, and in [101], coding 

length of 8000 was used over a Markov channel. However, since power adaptation has not been 

employed in those schemes, a fair and more accurate comparison is not yet available. 
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Figure 5.9 (a) Theoretic PEt- (b) The number of bits that has been 
correctly decided and the number of bits that could be correctly 
decided if at each step the capacity rate is attained. 

5.6 Summary 

In this chapter, we proposed a capacity-achieving feedback communication scheme for an 

AFSMC with precise CSI available to the decoder immediately and to the encoder with delay. 

This scheme is essentially a multiplexing of the scheme obtained for AWGN channels with 

feedback switching according to the augmented channel states. The scheme greatly simplifies 

the complexity in the coding design and coding processes. The error probability decreases to 

zero doubly exponentially and it shortens the coding length, compared with existing coding 

schemes over an AFSMC in the literature. We established the equivalence among feedback 

communication with over over an AFSMC, estimation over the same channel, and feedback 

stabilization over the same channel. We have seen that the utilization of the estimation/control-

theoretic equivalence of the proposed coding scheme facilitates the development. In fact, the 

idea of introducing multiplexing and augmented channel states was motivated by studying the 

estimation/control system; particularly the multiplexing idea is motivated by the research of 

Markov jump linear control systems, and the augmented channel state idea is motivated by 

the research of estimation/control systems with delay. We remark that these two ingredients 

may play significant role in studying any feedback communication systems with known time-

variations and delays. 
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CHAPTER 6. WRITING ON DIRTY PAPER WITH FEEDBACK 

6.1 Introduction 

The study of lossless interference cancelation in a communication system has attracted con­

siderable interest from researchers, since the publication of Costa's celebrated article "Writing 

on Dirty Paper" [14]. Costa considered a power constrained discrete-time Gaussian channel, 

in which there are two independent processes that corrupt the channel inputs. One process, 

a sequence {^} of i.i.d. A/*(0, Q) random variables, is completely known to the encoder non-

causally and is unknown to the decoder; this is referred to as the interference (or channel 

states). The other process, a sequence {Nt} of i.i.d. A/*(0,1) random variables (independent 

of {&}), is unknown to neither the encoder nor the decoder. Costa named this model as the 

writing on dirty paper- (WDP-) channel model. Fig. 6.1 illustrates this model, in which W is 

the message, u is the channel input, £ is the interference, N is the channel noise, y := u+Ç + N 

is the channel output, and W is the decoded message. If £ is zero (or is also known to the 

receiver), then the channel can achieve a rate 1Z with the channel input power being at least 

V(JV) := 227L — 1. If £ is not zero and is not known to the receiver, then obviously the minimum 

channel input power VWDPO^) f°r achieving rate TZ is bounded by 

P(%) < (%) < (1 + QM%). (6.1) 

What is surprising is that the lower bound is achievable, namely there exists a strategy such that 

we can transmit across the channel as if the interference did not exist. In other words, we can 

achieve lossless interference cancelation, by which we mean that the interference is "canceled" 

without incurring any power increase or rate loss; such an optimal strategy was introduced by 

Costa in [14]. Note that the strategy of letting the encoder ignore the interference knowledge 

or letting the decoder try the brutal force way to cancel the interference incurs power increase 

or rate loss, and hence they are only suboptimal. 
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W 
decoder encoder 

Figure 6.1 AWGN WDP-channel model. 

Costa's results have been generalized to various situations; see [128, 129, 36, 12, 11, 37, 

138, 13, 139, 8, 38] and references therein. [12, 11] extended the results to the case of ergodic 

interference and colored Gaussian noise. [36, 37] showed that lossless interference cancelation 

is possible for arbitrarily varying interference, provided that the encoder and decoder share a 

common random dither signal. [138] showed that, as long as the interference and the noise are 

Gaussian (not necessarily memory less, stationary, or ergodic), the channel has a capacity as if 

the interference did not exist. Various coding schemes were also provided; see e.g. [36, 37, 38]. 

On the other hand, if the interference is known to the transmitter only in a causal manner (in 

which case the problem is sometimes referred to as writing on dirty tape (WDT)), the problem 

is much more involved; in fact both the capacity computation problem and the capacity-

achieving problem remain to be solved. See [128, 37, 129] for suboptimal coding strategies for 

the WDT-channels. 

These results have found broad applications in information hiding [85], digital watermarking 

[11], precoding for ISI channels [36], and precoding for broadcast channels [8]. To summarize 

its significance, the dirty paper coding study has been considered to be a basic building block 

in both single-user and multiuser communication problems [38]. 

The above results are focused on the case where the encoder does not receive any feedback 

from the decoder. In many situations, however, it is possible for the encoder to access the 

information at the decoder-side in a strictly causal way, namely the encoder has feedback from 

the decoder. As we have shown, the availability of such feedback usually allows us to consider­

ably simplify the coding scheme, to improve the performance, and to increase the capacity. We 

note that little is done to extend the dirty paper coding to feedback communication systems. 

In this chapter, we consider the WDP-channel where there is a noiseless feedback from the 

decoder to the encoder with one-step delay. We focus on the scenario of non-causal encoder-side 

information about the interference (rather than the WDT-scenario). In the case of arbitrarily 
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varying interference and AWGN, we present a Kalman filter based coding scheme to achieve the 

lossless interference cancelation. We then extend this result to the case of WDP-channels with 

both AWGN and 181. The proposed scheme greatly simplifies the encoder/decoder design and 

encoding/decoding processes, guarantees doubly exponentially decay of probability of error, 

and is optimal in the sense of achieving the capacity. This scheme also extends the Sk codes 

for AWGN non-WDP-channels to WDP-channels with both AWGN and ISI. 

Our study reveals the intimate connections among information, and control, and estimation 

over a WDP-channel. We show that the feedback communication over a WDP-channel is essen­

tially equivalent to a Kalman filtering problem, a tracking problem, and an MEG problem. This 

extends the perspective of integrating information, control, and estimation to WDP-channels 

with feedback. Such a unifying perspective may be applicable and useful to more general 

feedback communication problems, such as multiuser WDP-channels and WDT-channels with 

feedback. 

One potential application area of the research under noiseless feedback assumption is the 

sensor networks (as we mentioned in Section 3.1), in which the forward communication from 

the sensors to the base station (or the cluster center, if any) may be very noisy due to the 

limited power of the sensors, whereas the feedback communication from the base station to the 

sensors may be viewed as noiseless due to the high power of the base station. The interference 

to a sensor may be the signals sent by its neighboring sensors. Since the signals for neighboring 

sensors are usually correlated, the interference is partially known to this sensor. Our results 

say that we can significantly improve the forward transmission by taking advantage of both 

the feedback transmission and the knowledge about interference, which may be useful in sensor 

networks. 

The rest of the chapter is organized as follows. In Section 6.2, we introduce the optimal 

coding scheme for a WDP-channel with AWGN and arbitrarily varying interference. In Section 

6.3, we study a WDP-channel with arbitrarily varying interference, AWGN, and ISI. In Section 

6.4, we provide a numerical example. Finally we summarize this chapter. 

6.2 The AWGN case 

Consider the power constrained WDP-channel with AWGN shown in Fig. 6.2. Let the 

average power budget be V > 0. Let be an interference sequence known non-causally to 
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the encoder. This interference sequence can be deterministic or random; we assume that 

T + l 
g(l + 7>r&E& ^0 (6.2) 

<j=o 

as T tends to infinity (noting that E£j = ^ in the deterministic case). Let further {M} 

be AWGN with Nt ~ A/*(0,1). We first describe the proposed coding scheme and the cod­

ing process, then present the coding theorem, followed by the proof, and finally discuss the 

connections to a minimum-energy control problem and a Kalman filtering problem. 

6.2.1 Coding scheme 

Fig. 6.2 illustrates the designed coding system, in which we can identify the encoder, 

decoder, and WDP-channel. Let us fix the time horizon to be {0,1, • • •, T}, namely the number 

of channel uses is (T +1). 

decoder 

-i ,-i 

.-i 

-L -t-1 ft-1 

encoder 

w+w. 

yt-1 

control setup 

Figure 6.2 The optimal coding scheme for a WDP-channel with AWGN. 
The dotted box indicates a control system, referred to as the 
control setup. 

The encoder/decoder structures 
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In state-space, the encoder and decoder are described as 

I xt = axt_i - L(yt-i - Ct-i) 

encoder: Ut = cxt 

yt — ut + £t + Nt 

(6.3) 

and 

where 

decoder: x0,t = zo,t-i + a t 1Lyt, (6.4) 

a := VT+~P > 1 

c ~ 1 (6.5) 

L a , 
a 

:= 0, Y-I  := 0, £o,-i := 0, and X Q  will be determined shortly. We call xt the encoder state 

and xqtt the decoder state. 

Transmission of analog source 

The designed communication system can transmit either an analog source or a digital 

message. In the former case, the coding process is as follows. Assume without loss of generality 

that the to-be-conveyed message W is distributed as W(0, V) (if the variance is not V, we can 

scale W to have the desired variance). To encode, let 

*_! := W + Wm, (6.6) 

i.e. XQ := W + WM, where 1 

Wm ••= (6-7) 

Then run the system till instant of time T, generating So,t for t = 0,1, • • • ,T. To decode, let 

WT •— XQ,T- The distortion measure is 

MSE(Wr) := E(W - WTf. (6.8) 

Transmission of digital message 

To transmit digital messages over the communication system, let us fix e > 0 arbitrarily 

1 Another choice which is asymptotically equivalent to (6.7) is WM := — 
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small. Suppose that we wish to transmit one of a set of 

MT := o(T+1)(1-e) (6.9) 

messages. We equally partition the interval 

(1 + ^ (* + W=l) (6.10) 

into Mt sub-intervals, and map the sub-interval centers to a set of Mt equally likely messages; 

this is known to both the transmitter and receiver a priori. 

Suppose now we wish to transmit the message represented by the center W. To encode, 

define x-i according to (6.6). Then run the system till instant of time T. To decode, let the 

decoder estimate Wt be 

Wt := (6-11) 

We then map Wt into the closest sub-interval center and obtain the decoded message Wt- 2 

We declare an error if Wt ^ W, and call a (an asymptotic) rate 

R • =  I ™  — -  l o g  M t  (6.12) 
T-+00 1 + i 

achievable if the probability of error PEt vanishes as T tends to infinity. 

Interestingly, the coding scheme can be interpreted as follows. When the codebook, namely 

the mapping between the messages and initial condition xq, has taken into account of the non-

causal knowledge of the interference {£t}, the encoder works strictly causally in the sense that 

at time t, the encoder only needs the knowledge of £<_i. Whether this could be useful remains 

to be seen. 

6.2.2 Coding theorem 

Theorem 4. Let {^} be an arbitrarily varying interference sequence (deterministic or random) 

known to the encoder non-causally and satisfying (6.2), and {M} be AWGN with Nt ~ J\f(0,1). 

Then under the power constraint Eu2 < V, 

2 Another decoding method is to map XO,T directly into the closest sub-interval center and obtain the decoded 
message WT- This is asymptotically identical to the above decoding method. The scaling by 1/(1 — a~2T~2) is 
to remove the bias in the estimate of W; see (3.34) and [43]. 
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i) The coding scheme constructed in Section 6.2.1 transmits an analog source W ~ YV(0, V) 

from the encoder to the decoder at the capacity rate 

C(P):=llog(l + 7>), (613) 

with MSE distortion MSE(Wr) satisfying the optimal rate-distortion tradeoff function given by 

~ 2(T + 1)l0g MSE(Wr) 

for each T. 

ii) The coding scheme constructed in Section 6.2.1 can transmit digital messages from the 

encoder to the decoder at a rate arbitrarily close to C(V), with PEt decays to zero doubly 

exponentially. 

Remark 14. Compared with the coding scheme for AWGN non-WDP-channels, the one 

for AWGN WDP-channels has two main differences: The presence of "process noise" (cf. 

[57]) £t-1 at the encoder, and the presence of initial condition offset WM- In fact, these 

are the two main techniques needed to generalize the coding schemes designed for non-WDP-

channels to WDP-channels. The presence of the process noise Çt-i at the encoder leads to 

that, the interference does not affect the encoder state xt, since the process noise cancels 

the interference before the interference enters the encoder state. This follows that the channel 

input ut is not affected by the interference since ut = cxf In addition, by linearity of our 

coding scheme, the decoder state fo,T depends affinely on XQ, £, and N. The terms associated 

with xq and £ are known to the encoder before the transmission because is known to the 

encoder non-causally, and therefore the encoder can offset xq to cancel the term associated with 

£ in xqtT, namely, the decoded message would not be affected by the interference. In summary, 

we can achieve lossless cancelation of interference £ by applying these two techniques. 

Proof:  See Appendix D.l. • 

6.2.3 Connections to control problem, tracking problem, and estimation problem 

In this subsection, we briefly discuss the equivalent relations of our coding scheme to an 

MEG problem, a tracking-of-unstable-source problem, and a Kalman filtering problem. These 
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relations are conceptually appealing since they provide another example that information, 

control, and estimation, three fundamental concepts, can be studied in a unified framework, 

and if any one of these problems is solved, other problems can be solved. 

The dynamics of xt in (6.3), repeated here as 

I xt = axt-i + Z,(&_i - yt-i) 

< ut = cxt (6.15) 

yt = ut + £t + Nt, 

is indeed a control system, as indicated in Fig. 6.2. The control system is open-loop unstable 

with its pole at a, and is closed-loop stabilized with its pole at I/o, which is an MEC problem 

and the power of u is minimized over all possible choice of stabilizing L. Therefore, the 

optimality in feedback communication coincides with the optimality in control, and reliable 

feedback communication using (6.3) and (6.4) is equivalent to feedback stabilization of (6.15). 

Fig. 6.3 (a) illustrates a system closely related to the coding scheme shown in Fig. 6.2. 

The dynamics in Fig. 6.3 (a) is 

Xt+1 = axt + L£t 

n — cxf, 

ut = n -h 

yt = ut + £t + Nt 

Xt+l = axt Lyt 

h = cxt 

. 2o,i = a_t_1£f+i, 

where xq := (W + Wm) and xq 0. To see the relation to the coding scheme, letting 

xt := xt—xt in (6.16), we indeed obtain the dynamics of (6.3) and (6.4) through straightforward 

manipulation. Therefore, (6.16) generates the same channel inputs, the same channel outputs, 

the same decoded message as (6.3) and (6.4) do; namely, the two systems are T-equivalent. 

However, Fig. 6.3 (a) has an interpretation of tracking unstable source (i.e. {r<}) over a 

communication channel by applying the internal mode principle. It holds that asymptotic 

tracking of an unstable source over a (WDP- or non-WDP-) channel is equivalent to reliable 

feedback communication over the same channel. 
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tracker 
unstable source 

w + w, 
.-i .—1 

-t-1 

(a) 

process to be estimated 

w + w 

noise 

Kalman filter 

(b) 

Figure 6.3 (a) Tracking of unstable source, (b) The associated Kalman 
filtering problem. Note that the "process noise" enters both 
the process to be estimated and the Kalman filter. 

We can furthermore arrange Fig. 6.3 (a) to obtain the block diagram shown in Fig. 6.3 

(b), which is a Kalman filtering problem (cf. Fig. 1.1 in [57]).The dynamics of the Kalman 

filtering shown in Fig. 6.3 (b) is 

xt+i 

yt 

&t+1 

et 

I 

axt + 

cxt + Nt 

axt + L£t + Let 

2Â - ce* 

a-^xt+i, 

(6.17) 
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where xq (W + Wm) and xq 0. Note that xt, xt, and et in (6.17) are identical to those 

in (6.16), respectively. That is, the two systems are T-equivalent for any T. The feedback 

communication problem is then linked to an estimation problem, and their optimalizes coin­

cide. We also see from Fig. 6.3 (b) that the interference sequence becomes the process noise 

common to both the process to be estimated and the Kalman filter. Then a well-known fact 

about Kalman filtering (cf. [57]) implies that the interference does not affect the estimation 

error (xt — xt) and hence the channel input ut = c(xt — xt). Therefore, if we consider the offset 

of initial condition as an offset of the "codebook" (i.e. the partition and the assignment of 

messages), which takes into account of the non-causal knowledge about the interference, our 

dirty paper coding scheme is merely a reformulation of Kalman filtering algorithm for the case 

of process noise known causally to both the process and the Kalman filter. The connection 

of the optimal dirty paper coding scheme to the Kalman filter obtained here further confirms 

the optimality of the Kalman filter in the information theoretic sense. The role of the Kalman 

filter in more general communication setups, such as writing on dirty tape with feedback, is 

under current investigation. 

6.3 The ISI Gaussian channel case 

This section presents the optimal coding scheme for a WDP-channel with AWGN and 

ISI. We first describe the channel model. We then introduce the encoder/decoder structures 

and explain how to choose the parameters to ensure the optimality, and describe the encod­

ing/ decoding processes. Finally we present the coding theorem. 

6.3.1 Channel model and feedback capacity 

The WDP-channel T with ISI and AWGN is described in state-space as 

3= •. S,+1 = FS, + GU' (6.18) 
Vt = Hst + ut + Çt + Nt, 

where SQ := 0, F 6 Rm is stable, (F, G) is controllable, (F, H) is observable, m is the dimension 

or order of J7, and £T is an interference sequence known to the encoder non-causally and 

unknown to the decoder. See Fig. 6.4 (a) for the block diagram of F. Through the equivalence 
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shown in Section 4.2, the results developed for this channel hold for WDP-channels with colored 

Gaussian noise with rational power spectrum. 

-l 

Figure 6.4 State-space representation of the WDP-channel J7. 

Our focus is to find a (stationary, time-invariant) steady-state coding scheme to achieve 

the highest possible information rate, in other words, we wish to achieve the (stationary) 

asymptotic capacity, given by 

Coo := Coo CP) := sup lim ^—/(uT -• yT) (6.19) 
{in} 1 +1 v 

where the supremum is over all (asymptotically) stationary input sequences {114} satisfying the 

power constraint 

l i m  — E t / V  <  V (6.20) 
T-> 00 T + l  -  v  y  

and in the form of 

ut = lt^~X + MT + W_1 + (t (6.21) 

for any 71 6 Rlxt, fit € Rlx(T+1), rjt € Rlxt, and zero-mean Gaussian random variable (t G R. 

Here V > 0 is the power budget and I(uT —> yT) is the directed information from uT to yT. 

The asymptotic capacity problem admits a finite-dimensional time-invariant solution, which 

has rather low design/operation complexity. 

6.3.2 Coding scheme 

The encoder/decoder structures 



www.manaraa.com

127 

In state-space, the encoder and decoder are described as 

Liet-i 

Encoder: < 

Xt — Axt—i 

Ut — Cxt 

st — Fst-1 - £t-1 — Hst-1 

et-1 = yt-i — 6-1 — H St-1 

(6.22) 

and 

St+l — Fst + LyCt 

Decoder: ^ êt = yt - Hst (6.23) 

x0tt = x0,t-i + A-^Lxêt, 

where sq := 0, s_i :— 0, £_i := 0, sq := 0, Sq,-i := 0, A E R(n+1)x(n+1)j C € Rlx(n+1), 

Li 6 Mn+1, and E Mm. We call (n + 1) the encoder dimension. See Fig. 6.5 for the block 

diagram. Here A, C, ut, etc. depend on n, but we do not specify the dependence explicitly to 

simplify notations. 

decoder 
channel T encoder 

yt-1 

®o ,t 

so.T-rEZH 

-1 H 
° 1 

F 

H 

control setup 

Figure 6.5 The optimal coding scheme for the WDP-channel T. 

Optimal choice of parameters 

Fix a desired rate 7Z. Let DI := 2^ and n := m — 1 (recalling that m is the channel 
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dimension), and solve the optimization problem 

[atf,??#] := arg inf 
O/ER" 

s.t. E=AEA'—AEC'CEA'/(CEC'+l) 

KBEB', 
(6.24) 

where 

A:= Onxl 

, C := C 0 

±DI af 

(6.25) 

,C:= 1 Oixr 

Note that we need to solve (6.24) twice (one for +DI in A and one for —DI in A), and choose 

the optimal solution as the one with the smaller objective function value. Then we form the 

optimal Aopt based on and let (n* + 1) be the number of unstable eigenvalues in Aopt, 

where n* > 0. 

Now let n := n*, solve (6.24) again, and obtain a new ajpt and T>opt. Then form Aopt, let 

A* = A°P*, 2* = C* := [l,0ixn«], and form A*,C, and D*. Let 

Li 
C*E*C*' +1 

(6.26) 

It holds that (A*,C*) is observable, and A* has exactly (n* + 1) unstable eigenvalues. 

We assign the encoder/decoder parameters to the scheme built in Fig. 6.5 by letting 

n := n*, A := A*, C := C*,LX := L*, L2 := L%. (6.27) 

We then drive the initial condition SQ of channel F to 0. Now we are ready to communicate at 

a rate 7Z using power which is the minimum power needed to sustain the pre-specified 

rate 1Z. 

The encoding/decoding processes 

Transmission of analog source 

Assume that the to-be-conveyed message W is distributed as JV(0, In*+i) (noting that any 

non-degenerate (n* + l)-variate Gaussian vector W can be transformed in this form). Assume 
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that the coding length is (T + l). To encode, let 

xq := W + WM, (6.28) 

where 
T T j-1 

WM == - g + g g (F - (6.29) 
j=0 j=0 i=0 

Then run the system till time epoch T. To decode, let WT := XQ,T- The distortion is defined 

as 

MSE(WT) := E(W -  WT)(W -  WT)'- (6.30) 

Transmission of digital message 

To transmit digital messages over the communication system, let us first fix e > 0 small 

enough and the coding length (T + 1) large enough. Let 

z;:=[fn.+i,0]2*[7n.+i,0]'. (6.31) 

Assume that the matrix has an eigenvalue decomposition as 

(A*')~T~1Y,% (A*)-7-1 = EtA-TE't, (6.32) 

where ET — [e^, -, e(n*+1)] is an orthonormal matrix and AT is a positive diagonal matrix. 

Let (7T,i be the square root of the (i, i)th element of At- Let B 6 Rn*+1 be the hypercube 

spanned by columns of Et, that is, 

Ti­
to B= I 

i=0 

e  = 0 , - - - ,n*  1 .  (6 .33)  

Next we partition the ith side of B into (cr^j) ^ segments. This induces a partition of B 

into MT sub-hypercubes, where 

MT = SW-M (6.34) 

= [det((A*o-^r(A*)-^)]"^. 
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We then map the sub-hypercube centers to a set of MT equally likely messages. The above 

procedure is known to both the transmitter and receiver a priori. 

Suppose now we wish to transmit the message represented by the center W. To encode, 

define XQ according to (6.28). Then run the system till time epoch T. To decode, we map 

XQtT into the closest sub-hypercube center and obtain the decoded message Wt- We declare 

an error if WT 7^ W, and call a (an asymptotic) rate 

R lim 7773-7-log Mt (6 35) 
1 —•OO 1 -j- I 

achievable if the probability of error PET vanishes as T tends to infinity. 

As we can see, the encoder/decoder design and the encoding/decoding processes are rather 

simple. The computation complexity involved in coding grows as 0(T + 1). 

6.3.3 Coding theorem 

Theorem 5. Construct the encoder/decoder shown in Fig. 6.5 using n*, A*, C*, L\, L^, and 

WM- Then under the average power constraint Eu2 < V, 

i) The coding scheme transmits an analog source W ~ A/*(0, In*+i) from the encoder to 

the decoder at rate Coo CP), with MSE distortion MSE(Wr) achieving the optimal asymptotic 

rate-distortion tradeoff given by 

C°°^ 2(T + 1)log detMSE(Wr) ' 

ii) The coding scheme can transmit digital messages from the encoder to the decoder at a 

rate arbitrarily close to C00(7->), with PET decaying to zero doubly exponentially. 

Remark 15. The main idea of this dirty paper coding scheme is still the two techniques 

used for the AWGN WDP-channel: The presence of process noise £t-1 at the encoder, and the 

presence of initial condition offset WM which can be viewed as an offset of the "codebook". 

In addition, it still holds that the feedback communication problem is equivalent to an MEC 

problem, tracking-of-unstable-source problem, and Kalman filtering problem; details are skipped 

for brevity. 

Proof: See Appendix D.2. I 
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6.4 Numerical example 

In this section, we provide a numerical example of the proposed optimal coding scheme for 

AWGN WDP-channel. Assume that the power budget is V := 3, that is, we may achieve any 

rate equal to C(V) — e — 1 — e bit per channel use for any e > 0. Let e := 0.05, i.e. the desired 

rate is R = 0.95C(V) = 0.95 bit per channel use. Then we can construct the coding scheme 

according to Section 6.2.1. 

Simulation shows that R is indeed achieved since the decoder can distinguish among MT := 

a(T+1)(1-£) messages with the probability of error decaying to zero (in a doubly exponential 

fashion); see Fig. 6.6 (a). Due to the fast decay of probability of error, the coding length 

(and hence the coding delay) can be rather short (within 100) to attain a good performance. 

The shortened coding length also implies that the preview of the interference can be short. 

Additionally, the average channel input power converges to V, see Fig. 6.6 (b). For short 

coding length, however, the consumed power can be slightly different from the given power 

budget, since most of our analysis holds asymptotically. Fig. 6.6 (b) also shows the convergence 

of the decoder estimate Wt to the message W. 

estimation error 
time average of input power 

4—simulated 
o • theoretic 

0 200 400 600 800 1000 
number of channel uses (r+i) number of channel uses (T + l) 

Figure 6.6 (a) Simulated probability of error and theoretic probability of 
error, (b) Convergence of the average channel input power, and 
vanishing of estimation error (Wt — W). 
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6.5 Summary 

In this chapter, we have proposed capacity-achieving coding schemes for a WDP-channel 

with AWGN and for a WDP-channel with AWGN and ISI, both having noiseless output feed­

back. The interference is assumed to be known to the encoder non-causally before the transmis­

sion and unknown to the decoder, and can be arbitrarily varying, deterministic or random. We 

achieved lossless interference cancelation, that is, we canceled the interference without extra 

power overhead or rate loss. We exhibited the connections among feedback communication, 

feedback control, and estimation over a WDP-channel. In establishing lossless interference 

cancelation, we developed techniques which may be readily applied to more general WDP-

channels. We also discussed the potential usefulness of our feedback communication schemes 

to sensor networks, in which we may wish to take advantage of the high-quality feedback link 

and the knowledge of interference to improve the forward communication. 
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CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Thesis summary 

In the past few years, considerable efforts have been devoted to the subject of interactions 

between information and control, due to its theoretical and practical importance in the study 

of control under communication constraints, feedback information theory, networked systems, 

etc. 

This thesis is an addition to this subject. In this thesis, we have explicitly brought estima­

tion into the existing picture, and established a new perspective of unifying communication, 

estimation, and control. We have demonstrated that this perspective arises naturally and 

is powerful in solving important problems in feedback information theory. In particular, we 

designed the Kalman filter based coding schemes to achieve the feedback capacity of AWGN 

channels, frequency-selective fading Gaussian channels, time-selective fading Gaussian chan­

nels, and WDP-channels with Gaussian noises. These feedback coding schemes are equivalent 

to Kalman filtering problems and MEG problems, and their optimality and fundamental lim­

itations coincide. We also obtained a new information theoretic characterization of Kalman 

filtering, a new formula connecting mutual information and CRB or MMSE, connection be­

tween time-selective fading channels and Markov jump linear control, and so on. We anticipate 

that the perspective, techniques, and results developed in this thesis could be extended to more 

general scenarios and helpful in establishing a theoretically and practically sound framework 

that unifies information, estimation, and control. 

7.2 Future research directions 

Research will continue on the following aspects: 

1. Noisy feedback. As we pointed out in Section 2.2.5, the noiseless feedback assumption 

leads to the major limitation of feedback information theory. It is then necessary to 
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study the more realistic problem of communication with noisy feedback, after the ideal 

problem of communication with noiseless feedback has been resolved. We remark that 

by far we are not aware of any meaningful positive results regarding noisy feedback in 

the literature. Negative results include that, in the noisy feedback case, the SK coding 

scheme and its extensions leads to non-vanishing probability of error for a fixed signalling 

rate, or leads to a vanishing signalling rate if the probability of error decays to zero, as 

the coding length tends to infinity. 

One way out may be to realize that we do not need infinite coding length; on the contrary, 

due to the fast decay of probability of error, a very short coding length can be used, and 

that very short coding length may correspond to small enough probability of error and 

high enough signalling rate. This would require a careful comparison of the resultant 

rate and performance to the feedforward case, to see if there is any improvement using 

the noisy feedback, and if there is, how much improvement we can get. 

Another way is to, before the channel output is processed or sent back, we quantize 

it with high precision. Then the feedback link can be viewed as digital and noiseless 

when transmitting the digitalized channel output. The price we need to pay is that 

now the quantization error is further added to the channel output, namely the effective 

channel noise becomes the Gaussian noise plus the quantization error, resulting in a new 

effective non-Gaussian channel with noiseless feedback. It is known that the SK-like 

schemes work for non-Gaussian noise channels, so it is possible that we obtain a constant 

signalling rate with vanishing probability of error. The technical difficulty is that now the 

effective channel noise is correlated with the message, channel input, and noises at other 

times, which complicates the analysis. If we invoke the equivalence between information 

and control, this may necessitate a study of control over noisy channels together with 

quantization, a problem not investigated to the best of our knowledge. 

We also conjecture that if the message arrives at the encoder in a streaming fashion, 

we may have a better chance to fight against the feedback noise. This will also be 

studied. We expect the noisy feedback problem to be very challenging, but any progress 

in this regard may have high theoretic and practical significance. Theoretically, the noisy 

feedback case bridges the noiseless feedback case (related to standard Kalman filtering) 

and the pure feedfoward communication case (related to the sum-product algorithm, a 
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generalization of the Kalman filtering algorithm). Practically, it leads to feasible feedback 

communication solutions. 

2. Reducing the computation complexity in solving the optimization problem (4.11) for 

Gaussian channels with memory. The optimization (4.11) has (m — 1) free parameters to 

be searched (where m is the order of the channel) and is not convex. When the channel 

order is not too high, it can be solved with affordable computation cost using MATLAB. 

However, when the channel order is very high, say m = 100, directly solving (4.11) would 

be very difficult, if not possible. 

There are several possible ways to reduce the computation complexity for (4.11). First, 

we may try model reduction for high order channels, which reduces the channel order 

significantly without affecting much of the input-output behavior of this channel, and 

then we can solve with lower computation complexity the feedback capacity for the 

reduced-order channel. The feedback capacity for the reduced-order channel is expected 

to be close enough to that for the original channel; a rigorous proof will be provided for 

this statement. 

Second, we may explore the properties of the optimal coding schemes for Gaussian chan­

nels with memory. In our simulations, we have observed many interesting properties. 

For example, we have seen that a first-order encoder is sufficient to achieve the feedback 

capacity in very high SNR and very low SNR regimes, no matter how high the channel 

order is. This may be related to the fact that feedback does not improve the capacity 

in very high SNR and very low SNR regimes [20], namely the channel behaves as if it is 

memoryless. In many cases, we also observed that the optimal encoder dimension can 

be significantly smaller than the channel order. Hence, it may be interesting to quan­

tify precisely the optimal encoder dimension, which may require a careful study of the 

underline Riccati recursions. It is also interesting to study the locations of the unstable 

eigenvalues in a optimal coding scheme. 

Third, we may try to convexify the optimization problem (4.11). Numerous convexifying 

techniques exist in the linear matrix inequalities (LMI) study. So far our efforts to con­

vexifying (4.11) has produced little progress; in fact, we have found that this problem is 

equivalent to the structured static output feedback problem, which remains open (though 
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there is a possibility that some structured static output feedback can be convexified). On 

the other side, the problem of finite-horizon feedback capacity has been shown to be con­

vex (with 0((T + l)2) free variables, unfortunately) [124]. This implies that (4.11) is 

also equivalent to an infinite-dimensional convex optimization problem; whether we can 

reduce it to a finite-dimensional convex problem remains to be seen. We remark that 

any progress in this regard would also have high impact on the computational methods 

of controller design. 

3. Error exponents. In Gaussian channels with memory and feedback, the probability of 

error decays doubly exponentially, and we would like to compute the optimal error ex­

ponents defined in (3.39) which determines the decay rate of probability of error. Error 

exponents have been investigated in [113] for feedback communication systems; however, 

how to compute them is not available in the literature. The connection between MMSE 

(or CRB) and probability of error established in this thesis may be crucial. Thanks to 

that connection, it is expected that the decay rate of CRB is linked to the error ex­

ponent, and solving the optimal error exponent may boil down to a fini te-dimensional 

optimization problem, similar to the feedback capacity problem. This is under current 

investigation. 

4. MIMO channels with feedback. It is believed that feedback can have important advan­

tages in communication networks. With the problems of SISO Gaussian channels with 

feedback and WDP-channels with feedback being resolved, we are now ready to attack 

the problem of MIMO channels with feedback; note that the broadcast channels, a class 

of MIMO channels, are closely related to the WDP-channels. We anticipate that the 

connections among information, estimation, and control, extended properly, will play 

fundamental roles in this research. Besides, it is worth noting that, though in the SISO 

case, the optimal channel input does not require a feedforward term, the MIMO case 

usually needs a mixture of feedback and feedforward signalling. Such a feedforward sig­

nalling may be similar to the streaming source used in anytime encoder, but it can also 

be easily incorporated in a Kalman filtering framework as the process noise. Hence, the 

Kalman filter based approach developed in this thesis may be found useful in studying 

MIMO problems. 
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5. Writing on dirty tape with feedback. In a WDT-problem, the interference is known to the 

encoder causally and unknown to the decoder. This problem is much more complicated 

than the WDP-problem, and in the feedforward case, both the capacity computation 

problem and capacity-achieving problem remain largely open. However, this problem has 

important applications in precoding, watermarking, and data hiding. We wish to study 

the WDT-problem with feedback, due to its importance and the fact that it is the natural 

extension of the WDP-problem with feedback. This may be related to the streaming 

communication problem, because the information about the interference arrives at the 

encoder causally as a stream. 

6. Cooperation with limited information. We conjecture that information transmission 

/processing and feedback are central to generating cooperative behavior. Without in­

formation transmission/processing or feedback, there is no cooperation or cooperative 

behavior. However, in a cooperative system with multiple agents, it is not easy to sep­

arate the notions of information and control: The transmission of information can be 

viewed as feedback among agents; information processing is intertwined with estimation 

and detection; and the processed information is utilized for decision making and generat­

ing control commands. Therefore, it is necessary and advantageous to study information, 

estimation, and control jointly in a cooperative system. We would like to see the broader 

impact of our study on cooperation problems. 

Our preliminary results have already shown that information exchange considerably af­

fects the cooperative behavior [75]. Roughly speaking, no cooperative behavior occurs if 

the amount of information exchange is limited below some level, and cooperative behav­

ior emerges otherwise. Noise, as a measure of limited information, was introduced in our 

model, in contrast to noiseless models in the literature [56]. We emphasize that the in­

troduction of noise is important for studying the interplay between information/feedback 

and the cooperative behavior, since it allows us, first, to keep track of how information is 

conveyed, processed, and utilized in such a system, and second, to understand how local 

information exchange may be used to generate global behaviors. 

Particularly, we may proceed as follows. We wish to obtain an explicit characterization 

of information flow in our multiple-agent system, based on the information flow concepts 
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developed in [83] or [130]. We may also generalize [75] to multiple hypothesis testing 

scenario in which richer system behavior is possible; note that [75] concerns about a 

binary hypothesis testing problem. The recent work on distributed hypothesis testing 

in [90] has been found relevant. We will test the idea of if the convergence to the right 

hypothesis has anything to do with stability of information exchange. 

7. Other directions. We may also pursue along other directions. For one example, we can 

study the time-selective fading Gaussian channels whose channel state takes continuous 

values. This would include the Rayleigh fading channels, Nakagami fading channels, and 

Rician fading channels as special cases. We envision that our results in Chapter 5 extends 

to this case, with probably an argument of partitioning the channel state space and a 

justification of switching two limits, as was done in [47]. For another example, we may 

propose an alternative dynamical programming based solution to compute the finite-

horizon feedback capacity, with the advantage over [136] that the obtained optimizing 

parameters can be directly used to construct the optimal finite-horizon time-varying cod­

ing scheme. We may also attempt to confirm the stationarity conjecture in an alternative 

way, preferably based on connections among information, estimation, and control. This 

is of independent interest to the study of many estimation/control problems, dynamic 

programming problems, and Markov decision problems; if such an alternative method 

does exist, we may be able to establish that the optimal solutions in these problems are 

stationary. Possible approaches are listed as follows. First, we may investigate if the dou­

ble indexed sequence CT,U satisfies the uniform convergence property based on analysis of 

Riccati equations; if confirmed, then we may be able to prove that limn_»oo limn_>oo C'r .n 

equals the limit of CT,T, namely the asymptotic feedback capacity C*,. Second, we may 

try to find a solution to the associated Bellman equation, since the existence of such a 

solution implies the stationarity conjecture; note that the cost function is already known 

but the cost-to-go function needs to be identified. Third, noting that the dynamical 

programming problem associated to this feedback capacity problem is singular, we may 

study a sequence of perturb dynamical problems which are: 1) regular, 2) admit station­

ary optimal solutions, and 3) approaching the singular problem. This may also prove the 

stationarity conjecture. Finally, we remark that we are currently investigating the ex­

tension of the formula linking mutual informaiton and MMSE obtained by Guo, Shamai, 
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and Verdu in [51] to more general settings, as indicated in Section 4.5. 
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APPENDIX A. SYSTEMS REPRESENTATIONS AND EQUIVALENCE 

The concept of system representations and the equivalence between different represen­

tations are extensively used in this paper. In this subsection, we briefly introduce system 

representations and the equivalence. For more thorough treatment, see e.g. [93, 9, 18]. 

A.l Systems representations 

Any discrete-time linear system can be represented as a linear mapping (or a linear opera­

tor) from its input space to output space; for example, we can describe a SISO linear system 

as 

for any t, where Mt E R(t+1)x(t+1) is the matrix representation of the linear operator, ul 6 Rt+1 

is the stacked input vector consisting of inputs from time 0 to time t, and yt G Rt+1 is the 

stacked output vector consisting of outputs from time 0 to time t. For a (strictly) causal SISO 

LTI system, Mt is a (strictly) lower-triangular Toeplitz matrix formed by the coefficients of 

the impulse response. Such a system may also be described as the (reduced) transfer function, 

whose inverse ^-transform is the impulse response; by a (reduced) transfer function we mean 

that its zeros are not at the same location of any pole. 

A causal SISO LTI system can be realized in state-space as 

where xt E Rz is the state, ut 6 1 is the input, and yt E M is the output. We call I the 

dimension or the order of the realization. The state-space representation (A.2) may be denoted 

as (A,B,C,D). Note that in the study of input-output relations, it is sometimes convenient 

to assume that the system is relaxed or at initial rest (i.e. zero input leads to zero output), 

yt = Mtu* (A.1) 

xt+1 Axt + But 

Cxt + Dut 
(A.2) 
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whereas in the study of state-space, we generally allow XQ ^ 0, which is not at initial rest. For 

MIMO systems, linear time-varying systems, etc., see [9, 18]. 

The state-space representation of an causal FDLTI system M.(z) is not unique. We call a 

realization (A, B, C, D) minimal if (A, B) is controllable and (A, C) is observable. All minimal 

realizations of M(z) have the same dimension, which is the minimum dimension of all possible 

realizations. All other realizations are called non-minimal. 

An example 

We demonstrate here how we can derive a minimal realization of a system. Consider 

GT(A, C) in (4.46) in Section 4.4, which is given by 

Gt{A, C) — — ZJ^GT) 1j (A.3) 

where the state-space representations for G?(A, C) and Z^1 are illustrated in Fig. 4.8 (b) and 

Fig. 4.1 (c). Since (A.3) suggests a feedback connection of G* and Z~x as shown in Fig. A.l, 

we can write the state-space for G* as 

Xt+l — Axt -)- Li^et 

ft = % 

St+1 — Fst + Gft + L>2,tet 

et = yt - Hst — rt 

sa,t+1 — Fsatt + Gft 

m = yt ~I- Hsa,t ~ ft-

(A.4) 

Then let st := st — sQ)t, and we have 

xt+i 

h 

St+l 

et 

A&t + Litt&t 

F st + L2ltet 

yt — Hst-

(A.5) 

It is straightforward to check that this dynamics is controllable and observable, and therefore 

it is a minimum realization of G* • 
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Figure A.l Q* is a feedback connection of Q* and Z 1. 

A.2 Equivalence between representations 

Definition 5. i) Two FDLTI systems represented in state-space are said to be equivalent if 

they admit a common transfer function (or a common transfer function matrix) and they are 

both stabilizable and detectable. 

ii) Fix 0 < T < oo. Two linear mappings Mipp '• K9^T+1^ —» RP(r+1)) i = 1,2, both at 

We note that i) is defined for FDLTI systems, whereas ii) is for general linear systems, i) 

implies that, the realizations of a transfer function are not necessarily equivalent. However, if 

we focus on all realizations that do not "hide" any unstable modes, namely all the unstable 

modes are either controllable from the input or observable from the output, they are equivalent; 

the converse is also true, ii) concerns about the finite-horizon input-output relations only. Since 

the states are not specified in ii), it is not readily extended to infinite horizon: Any unstable 

modes "hidden" from the input and output will grow unboundedly regardless of input and 

output, which is unwanted. 

As we mentioned in Section 4.2.2, for any uT and NT, Fig. 4.1 (a) and (b) generate the 

same channel output yT. That is, the mappings from (uT, NT) to yT for the two channels are 

identical, and both are given by 

initial rest, are said to be T-equivalent if for any uT G ^ # holds that 

M i t T ( u T )  = M 2,T ( u t) .  (A.6) 

Examples 

yr = ZT(ZTluT + Nt). (A.7) 
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Thus, we say the two channels are T-equi valent. 

The feedback communication system (4.55), estimation system (4.54), and control system 

(4.58) are T-equi valent, since for any NT ,  they generate the same innovations eT .  
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APPENDIX B. PROOFS OF RESULTS IN CHAPTER 4 

B.l Proof of Proposition 5: Necessary condition for optimality 

In this subsection, we show that our general coding structure, in the form of (4.58), satisfies 

the necessary condition for optimality as presented in Proposition 5. 

Since {yt} is interchangeable with the innovations process {e*}, in the sense that they 

determine each other causally and linearly, it suffices to show that ~EuteT = 0. Note that 

Eutet-i — EDAXt-iet-i — H>Lt-iKett-i 

@ EDAXt_iX;_iC' + EDAX,- DA2*_iC (B.2) 

= BAEt-iC + 0 - DAEt_iC = 0, 

where (a) follows from (4.58) and (4.59). Similarly we can prove Euter = 0 for any r < t — 1. 

B.2 Proof of Proposition 6: Convergence to steady-state 

In this subsection, we show that system (4.58) converges to a steady-state, as given by 

(4.71). To this aim, we first transform the Riccati recursion into a new coordinate system, 

then show that it converges to a limit, and finally prove that the limit is the unique stabilizing 

solution of the DARE. The convergence to the steady-state follows immediately from the 

convergence of the Riccati recursion. 

Consider a coordinate transformation given as 

lit — ICXj — BAXi-i — lB>Lt—iet—i (B.l) 

and thus 

A 0 
A := $A0 1 := C := (B.3) 

0 F 
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$ := 

where 
ïn+l 0 

—0 I„ 

and 4> is the unique solution to the Sylvester equation 

Fcj> — 4>A = -GC. 

(B.4) 

(B.5) 

Note that the existence and uniqueness of is guaranteed by the assumption on A that 

Aj(—A) + Aj(F) / 0 for any i and j (see Section 4.4.2). 

This transformation transforms A into block-diagonal form with the unstable and stable 

eigenvalues in different blocks, and transforms the initial condition So to 

S0 := $ 
In+1 0 1 

$ 
In+1 0 

= 

0 0 —  ( f )  ( j x f i '  
(B.6) 

Therefore, the convergence of (4.60) with initial condition So is equivalent to the convergence 

of 
A v.rp'ry. Az 

(B.7) S.t+1 — AZitA' 
AS,C'CSFA' 

CSX' +1 

with initial condition SQ. By [44], ST would converge if 

/ T O  0  1  ( " I n + 1  0  I X  
det -SQ M (B.8) 

\ 0 Im _ 0 X22. J 

where X22 is a positive semi-definite matrix (whose value does not affect our result here). Since 

det 

1 
0

 

0
 

" / H
 

O
 

0 I —cf) (jxj)' O
 = det 

—I <f)'X22 

<fi I — 4>(j)'x22 _ 

= det(—I) det (/ - #'X22 + 4>4>'X22) 

+ 0, 

(B.9) 

we conclude that St converges to a limit 

This limit S^ is a positive semi-definite solution to 

ASpcC'CS^A' 
ÇSooÇ' + l ' 

(B.10) 
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By [57], (B.10) has a unique stabilizing solution because (A, Ç) is observable and A does not 

have any eigenvalues on the unit circle. Therefore, is this unique stabilizing solution, which 

can be computed from (B.10) as (see also [44]) 

£00 = 
£11 0 

0 0 
(B.ll) 

where En is the positive-definite solution to a reduced order DARE 

^ ,, ASn(C + ff»)'(C + fl-*)£nA' a, - as,, a - {c+Hmu(c+m+1 • 

and has rank (n + 1) (cf. [44]). Thus, converges to 

Soo = 
0Hll 10', 

(B.13) 

with rank (n + 1). 

B.3 Proof of Lemma 3: Convergence of CT 

It suffices to prove the lemma for the colored Gaussian noise case, since the other channel 

model is equivalent to this channel. We first show that the limit exist and is finite, and then 

show that the limit is indeed C^. 

The proof of the first claim is similar to [60]. Essentially we show that the sequence 

{(T + 1 )CT} is superadditive, namely for any k and I 

{k + Z + 2)CK+I+I > (k + 1 )CK + (Z + 1 )CI, (B.14) 

which would follow that 

lim CT = sup CT (B.15) 
T—>00 T 

by Fekete's Lemma [100]. Since supr CT is finite (by the finiteness of Cr,//» the finite-horizon 

feedforward capacity, and by the uniform boundedness of CT — Cr,//> cf. [17, 116]), the limit 

of CT exists and is finite. 

To see the superadditivity, fix any integers k and I. Assume that the message w and the 
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corresponding channel input uk generated by an encoding function ut(w, t — 0,1, • • •, k, 

attains C&, where yk is the channel output induced by uk. Moreover, assume that the message 

w and the corresponding channel input ul generated by an encoding function ût(w, y*-1), 

t = 0,1, • • •, I, attains Ci, where yl is the channel output induced by ul. That is, 

I ( w , y k )  ( = I ( u k ^ y k )  = ( k  +  l ) C k  

I { w \ y l )  =  I ( ù l  y 1 )  —  ( 1  +  1 ) Q ,  

where (a) follows from [116]. 

Now we consider the horizon (k + l + 1), that is, time index i runs from 0 to (k + I + 1). In 

the times when i = 0,1, • • •, k, we use w and ut(w, yt_1), which generates channel output yk\ 

in the times when i — k + 1, • • • ,k + I + 1, we use w and ût(w, yt_1), which generates channel 

output yl (by stationarity of the colored Gaussian noise). Namely the input and output are 

jjk+l+l [%&/&!']/ 
(B.17) 

Yk+l+1 ;= yl']\ 

Note that since uk and ul satisfy the power constraints, JJk+l+1 also satisfies the power con­

straint. 

Then we compute the mutual information between the message W [w, w] and the stacked 

output Yk+l+1 as follows, assuming that w and w are independent. 

I { W ]  Y k + l + 1 )  =  h ( W )  -  h ( W \ Y k + l + 1 )  

= h{w) + h{w) — h(w\yk, yl) — h(w\w, yk, yl) 

>  h ( w )  +  h ( u i )  —  h ( w \ y k )  —  h ( w \ y l )  (B.18) 

=  I ( w ; y k )  +  I ( w ; y l )  

= (k + 1 )CK + (I + 1 )CI-

This further implies that {(T + 1 )CT} is superadditive. Then {CT} converges, and we denote 

the limit by C. 

Now we show that Coo = C. Note first that Coo > C since C is achievable and since Coo 

is the maximum achievable rate. To be more precise, recall that for any e > 0, there exists a 

sequence of (2T(cT~e/2)tT) codes with vanishing PET as T tends to infinity [17]. For the same 
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e, we can find To such that for every T > To, it holds that 

C — CT — — — &T (B.19) 

for some 0 < 5T < e/2. Therefore, there exists a sequence of (2T(C+ÔT~^,T) codes, T > TQ, 

with vanishing PEY as T tends to infinity. So C is achievable. On the other hand, it has been 

shown in [17] that, any sequence of (2TRT,T) codes with vanishing PET must have 

RT < CT + &R (B.20) 

with CT > 0 decaying to zero. Since C > CT, we have 

RT < C + €T- (B.21) 

Letting T go to infinity, we see that any achievable asymptotic rate R must hold R < C. 

However, Coo is achievable [116], so Coo < C. Thus we complete the proof. 

B.4 Proof of Proposition 8: Kg — 0 

In this section, we prove that Kg has to be 0 to ensure the optimality in (4.85). 

We first derive some properties of the communication system using the stationary GM 

inputs and the steady-state Kalman filtering. The system dynamics is given by 

ut — d sSii + 

st+i = F St + Gut 

yt = H st + Nt + ut 

Ss,t+1 — st §s,t 

Ss,t+i — F s S j t  + Ls&t 

et — yt — H$s,t — (H + d')sStt + ft + M 

. sS;t+i — FsSjt + Gut — Lset, 

(B.22) 

where SSIQ — 0 and sSio = 0. As before, the Kalman filter innovations {ET} will play an 
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important role. The innovations process is white with variance asymptotically equal to 

K e  =  l  +  K s  +  ( H  +  d ! ) T , s ( H  + à')', (B.23) 

where 2S := Esgs^. Following the same derivation for Proposition 7, we know that the asymp­

totic information rate is given by 

I ( S \ y )  =  ̂ l o g - K e ,  (B.24) 

which is consistent with the result in [136]. 

We now invoke the equivalence between the colored Gaussian channel and the 181 channel 

J7, that is, instead of generating y by (B.22), we generate y by 

yt = tit + %t 

s c ,t+1 = FsCjt + Gyt 

yt — HsCtt + yt, 

(B.25) 

where sc,o = 0. Since ZT = ZTNt, the mapping from (u, N) to y here is equivalent to that in 

(B.22). Therefore, (B.22) becomes 

Ut = d'sSit + St 

m = ut + Zt 

sc,t+1 — F sc>t + Gyt 

yt = Hsc>t + yt 

$s,t+1 — FSs,t Lset 

et = yt - H§s,t = (H + d')sSit + St + Nt 

— FsSit + Gut • ~ h set, 

(B.26) 

where sSjo = 0; see Fig. B.l for the block diagram. 

Our analysis of this system is facilitated by considering transfer functions. Note that 

T&U = S 

T n u  =  T Z ,  
(B.27) 



www.manaraa.com

150 

>c,t 

•— G .-1 

Figure B.l Block diagram for the communication system using the GM 
inputs and Kalman filtering, where sC]t is the state for Z"1 

with sC;o = 0, and sS)t is the state for system (F, Ls, H, 0) with 
sa, o = 0. 

where S is the sensitivity, and T := § — 1 is the complimentary sensitivity. (The sensitivity S 

here should not be confused with the sensitivity in Section 4.5.1.) Then we have 

u = §£ + T ZN 
(B.28) 

y = S(Z + Z#). 

Now assume that d and Kg form the optimal solution to (4.85), where Kg ^ 0, for contra­

diction purpose. We can then compute the corresponding optimal Es, Ls, S, T, etc. Fix the 

optimal L s ,  S, and T. We will show that this leads to: 1) The whiteness of {yt}; 2) L s  = G\ 

3) Kg = 0 and hence contradiction. 

1) For fixed optimal values of L s ,  S, and T, suppose that we can have the freedom of 

choosing the power spectrum of £ in (B.26). Since we have assumed the optimality of a white 

process {St}, it must hold that any correlated process {£Cit} does not lead to a larger mutual 

information than {£t} does. Precisely, assume a stationary correlated process {£c,t} replaces 

the white process {St} in (B.26). Then {£t} yields the maximum achievable rate over all 

possible {£c,t}, i-e., it solves 

max I{Sc ' ,y) 
Ls,S,T fixed,S£c(e^e) 
s.t. Ev?<V 

(B.29) 



www.manaraa.com

151 

Since 

%; y) = = /)(&;) - A(SZ#) (B.30) 

and h ( S Z N )  is fixed for fixed §, the above optimization is equivalent to 

1 /"I 
max - / log Sy(éj27r6)d0. 

2 

•t. Eu2=f?1 S^{e^9)Ssc{e^e)+ST{e^B)Sz{e^&)de<V 
~2 

(B.31) 

However, this optimization problem is equivalent to solving, for some V\ > 0, 

1 
max -max ^ log 

2 

s.t. 
"2 

(B.32) 

which we identify as a new forward communication problem, see Fig. B.2. In this problem, we 

want to tune the power spectrum of §£c, the effective channel input, to get the maximum rate. 

The optimal solution is given by waterfilling, namely, the power spectrum 5§(e- ) 2 7 r 6)Ssc  (e j 2 7 T Ô) 

needs to waterfill the power spectrum S§(e^2n9)Sz(e^2nd). By optimality of {£<}, Kf5g(e:,27r6) 

is the waterfilling solution. 

——»e 
y 

Figure B.2 An equivalent forward communication channel. Here S£c is the 
effective input, SZN is the effective channel noise, and y is the 
output. 

Since Sgfê2170) = 0 for some 9 if and only if S(z) has a zero for that 9 on the unit circle, 

and since §(z) is a finite dimension transfer function with a finite number of zeros, the power 

spectrum Sgfê2'*9) cannot have zero amplitude at any interval. This follows that the support 

of the channel input spectrum -K£<S§(ej27r9) is [—1/2,1/2]. 

In waterfilling, if the support of input spectrum is [—1/2,1/2], then the output spectrum 

must be flat. This is easily proven by contradiction. Thus, {yt} is a white process. Let us 
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assume that its variance is a2. 

2) Note that both y and e have white spectrum, which imposes condition on the choice of 

Ls. The transfer function Tye is illustrated in Fig. B.3, where we can see that its structure is a 

Kalman filter structure. To make e white, it is necessary to choose Ls to be the Kalman filter 

gain (cf. [57]), given by 
r  _ F Z c H '  +  a 2 G  

s : HZCH' + <r2 ' 
(B.33) 

where Ec is the estimation error covariance matrix and is a nonnegative solution to the DARE 

E c  =  F E C F  +  a ' G G  
T' _i_ ^nv 

HYiCH' + a2 
(B.34) 

Clearly, Ec = 0 is a solution to the DARE. By [57], it is also the unique nonnegative solution. 

Hence, we need to choose Ls := G. 

Sc,t -1 , -1  

Figure B.3 The state-space representation of the transfer function Ty ye-

3) The fact that Ls — G leads to reduction of system (B.26) or equivalently (B.22). We 

have 

St+1 = (F — GH)st — GNt 

£ s  =  ( F  —  G H ) T , S ( F  —  G H ) '  +  G G ' .  

In the case that ( F  —  G H )  is unstable, the closed-loop of (B.26) is unstable and cannot 

transmit information. In the case that (F — GH) is stable, the steady-state of £s depends only 

on (F, G, H) and is independent of the choice of d and Ks, and thus (4.85) becomes 

Coo — max — log(l + Kg + (H + d')Y^s{H + d')'). 
Es fixed,deRm ,K£€R4 
s.t. V=d!'Lsd+Ks 

(B.36) 
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This is equivalent to 

max H E s d ,  
de Rm ,K sëR 

s.t. d'T,3d<V—Ks 
(B.37) 

which requires Kg = 0. 

B.5 Proof of Proposition 9: Finite dimensionality of the optimal scheme 

i) To show that Coo,n is non-decreasing as n increases, note that, an encoder (A, C) of 

dimension (n + 1) can be arbitrarily approximated by a sequence of encoders {(Ai,Ci)} of 

dimension (n + 2) in the form of 

A 0 

0 1 
C (B.38) 

and therefore the supremum in (4.87) with encoder dimension (n + 2) is no smaller than the 

supreme with encoder dimension (n + 1). So Coo,M is increasing in n. 

ii) By proposition 7 and the definition for C^m-iCP), the optimization problem for solving 

Coo.m—lCP) is given by 

Coo,m—l('P) — sup 
AeMmXTn,C 

s.i.S=ASA'-ASC'(CEC'+l)-1CEA/ 

•'=V 

-log(C2C' + l) 

(B.39) 

To compare it with Coo("P), we rewrite (4.85) and (4.86) in another form, incorporating Kg = 0. 

Define 

A := 
F + Gd' 0 

Cd' F 

= [d H] 

= [d 0] 

Ss 

Ss 

(B.40) 
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It is then straightforward to verify that 

^log(l + (# + d')2,(# + d'y) = ^log(l + CSC') 

d'Ssd = BSD' (B.41) 

ÂSA'-ÂÊC^CÊC' + l)"1^!' = 2, 

which yields that 

Coo(P) = sup 1 log(l + CSC') 
deR"1 

s.t. E=AEA' —ASC (CEC+1) ~1CEA' 

DËD'=r 

2 
(B.42) 

Comparing (B.42) with (B.39), we conclude that Coo,m-i(P) > CQO(P). However, since for 

each (A, C), the channel input sequence is stationary by the steady-state characterization of 

the general coding structure, it holds that Coo,m-i(P) < C00('P). Therefore, we have 

Coo,m-l(7>) = Coo(P). (B.43) 

Then ii) follows from i) immediately. 

B.6 Proof of Proposition 10: Achieving in the information sense 

By Proposition 9, the optimization problem for solving Poo(JZ>) in (4.8) (which is equivalent 

to solving Coo('P)) can be reformulated as 

[A<yt c°pt Z°pt\ •- arg inf DSD', 
AeRmxm,C 

s.4.E=AEA/-AEC'(CEC'+l)-1CEA' (B.44) 

\ogDI(A)=R. 
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for any desired rate 1Z. Without loss of generality, we may assume that (A, C) is in the 

observable canonical form, i.e. 

Onxl In 

an &n - 1 • ' - o i  
= 

1 Olxn 

(B.45) 

Observe that det A = an. Thus, DI(A) = | det A| = \an\ if A does not contain stable eigenval­

ues, and DI(A) > | det A| = \an\ otherwise. 

As a consequence, if we search over A with an fixed to be 2n or —2^, we actually enforce 

DI(A) > 2r. However, the optimal solution must satisfy DI{Aopt) — 2n, since otherwise the 

system has a rate equal to Roo,m-i — log DI(Aopt) > 7Z, which would require more power 

than the case that Roo,m-i = notice that (B.44) is a power minimization problem. To 

summarize, we can remove the constraint log DI (A) = 72. by letting an = ±2n in (B.45), and 

the optimal solution A does not contain stable eigenvalues. Furthermore, note that unit-circle 

eigenvalues do not generate any rate or power and hence can be removed. Thus, if Aopt has 

(n* + l) unstable eigenvalues, we can solve the optimization problem with A having size (n* + l) 

and the obtained optimal solution still achieves Coo-

B.7 Proof of Proposition 11: Optimality in the analog transmission 

The end-to-end distortion is given by 

MSE(Wj) 

where 

= e (w-w t ) (w-w ty 
= E(x0 - x0 , t) (xo -  x0 >i)/ 

= E(A~t~1xt+i - A'^xt+iXA-^xt+i - A-^xt+i)' 

= 'EiA^t~lxt+ix't+lA~t~l 

= A-t-^t+xA'-*-1, 

2x,i+1 : =  [ I ,  0]Ef+i[J, 0]' 

(B.46) 

(B.47) 
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and the expectation is w.r.t. the randomness in W and Wt- By rate-distortion theory, the 

above distortion needs an asymptotic rate R satisfying 

R > lim 
t—»oo 

2QO* 

1 det A2 t + 2  

2 (t +1) ^ det Ex,t+i 
lim 

t—>oo 
(b.48) 

= log | det A\. 

From Proposition 10, we know that log | det A* | equals Coo and the average channel input 

power equals V. Because C^ is the supremum of asymptotic rate, it follows that the equality 

in (B.48) is achieved. Then we see that the proposition holds. 

B.8 Proof of Proposition 12: Optimality in digital transmission 

It is sufficient to show that Roo>n(A, C) is achievable for any fixed (A, C). To show this, 

for the fixed (A, C), construct the scheme in Fig. 4.2 and use Q*F) the Kalman-filter based 

optimal receiver. The closed-loop (4.58) is stabilized and will converge to its steady-state for 

large enough T. 

We can then directly verify that Theorems 4.3 and 4.6 in [28] are applicable to the (steady-

state) LTI system. These theorems assert that, if the closed-loop system is stabilized, then we 

can construct a sequence of codes to reliably (in the sense of vanishing probability of error) 

transmit the initial conditions associated with the open-loop unstable eigenvalues of A (denoted 

oq, • • •, ofc, if any), at a rate 

for any e > 0, and in the meantime, Poo,n(A, C) < V holds. Therefore, we conclude that, for 

any (A, C), the portion of W that is associated with the unstable eigenvalues of A is transmitted 

reliably from the transmitter to the receiver at rate arbitrarily close to i?oo,n(A C). Moreover, 

we notice that we can achieve Coo,n by a sequence of purely unstable ( A ,  C) (i.e. k = ri), 

in which the initial condition W is the message being transmitted. This follows that W is 

transmitted at the capacity rate. 

R (1 ~ t)Roo,n(A, C) (b.49) 
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In addition, [28] showed that for any choice of xq , it holds that 

( 0"rp n-
PET = 1-H(l-2Q[^) ), (B.50) 

i=0 V \ 

where or,* is the square root of the ith eigenvalue of MSE(xo,r), and 

MSE(x0,r) = E(x0  - x0 j T)(x0  - xo t T)'  
(B.51) 

Note that the expectation is w.r.t. the randomness in aio.cr only, different from (B.46), and 

that asymptotically S t+i and hence are independent on the choice of XQ.  

It then holds for each i ,  

(o"T,i)2 < Amax(MSE(x0,T)) 

Ama 

(b) (B.52) 

(c) 

where Amax(M) denotes the maximum eigenvalue of M, a(M) denotes the maximum singular 

value of M, (a) follows from \{AB) = A(BA), (b) follows from |A(A)| < CT(A), and (c) is 

because the maximum singular value is an induced norm. Since XI^T+I converges to steady-

state value exponentially, the above implies that, for T large enough, each ar,i decays to zero 

exponentially as T increases. 

Now using the union bound and the Chernoff bound, we have 

^ < Z2Q 

and hence PET decreases to zero doubly exponentially since e > 0 and UT,I  decays exponen­

tially. Thus we prove the proposition. 
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B.9 Numerical examples for optimal power computation 

We list some of the numerical results of the optimal power computation for finite-impulse 

response (FIR) and infinite-impulse response (IIR) channels in Table B.l. Note that, Row 

2 and Row 4 are first-order and second-order minimum-phase channels, and we observe that 

one unstable pole is enough for us to achieve the capacity. Row 3, Row 5, and Row 6 are 

a first-order non-minimum-phase channel, a second-order non-minimum-phase channel, and 

a third-order minimum-phase channel, respectively. Capacity of higher dimensional channels 

can also be computed with rather low complexity. For example, for a sixth-order channel with 

i _ 1 + 0.5z-J  - 0.4z~2  + 0.3z~3 + 0.8z~4 + 0.1 z'5 - 0.2z~6  

1 — 0.8z - 1  + 0.6z~2  — 0Az~3  — 0.2z~4  — O.lz -5  + 0.3z~6  '  

we can compute that Poo,n = 0.6003,0.3830,0.3781,0.3781,0.3781 for n = 2,3,4,5,6, respec­

tively, to achieve transmission rate R = 1 bit/channel use. Note that n — 6 corresponds to the 

capacity power. It takes less than 30 seconds to complete the computation for n = 6 case. 

Table B.l Capacity power for channels with transmission rate R = 1 
bit/channel use 

channel T n = 1 n = 2 n — 3 capacity 
water 

filling 

i - A  1.92 1.92 1.92 1.92 2.667 

i - f  0.75 0.667 0.667 0.667 0.667 

1 + h + 253- 1.586 1.586 1.586 1.586 2.51 

i + è - 2& 0.853 0.276 0.276 0.276 0.33 
(l+0.5z—'-0.4Z"*) 
(l+0.6z-%-0.4z-3) 2.745 0.745 0.745 0.743 1.4689 
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APPENDIX C. PROOFS OF RESULTS IN CHAPTER 5 

C.l Proof of C = logâ 

Assume without loss of generality that S t  = s [7] and St+\ = s[i], both drawn from the stationary-

distribution of {St}. Then it holds that 

-  m  m 

^121]4#, log (1 + (St+i)27(5t)) 2 1=1 j=1 
1 m m 

=  2 ^ 3 5 ^ l o g  ( 1  +  s [ i ] 2 7 ( s [ j ] ) )  
i=l j=l 

m l  m 

= 53 53 % log a(s[«], s\j]) 
i=i y=i 

= ^logâ(a[i]) 
i=i 

= logo 

C.2 Proof of Lemma 4: Stability of the closed-loop system 

i) The dynamics of without external input is x*f+i = a{St-i,  St)-1a:^ if S t-i = s[j], or 

xl+i = otherwise. So we have 

rti) _ Ai)Ai) 

and hence <&t is the state transition matrix for (5.8). 

By (5.4), on Qtyp, n(j,  t) grows approximately as (t + l)7r[j] for t  large enough, then as t  goes 

to infinity, n(j,t) goes to infinity. Since 0 < a(St~i, St)^1 < 1, goes to zero on Qtyp and is 

bounded between 0 and 1 on fi. 

ii) Conditioned on Sq and Xq ,  we obtain that 

Ez% = ̂ 2#) (C.l) 
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and hence Econverges to zero on CITYP- The boundedness of Ex[^ on $1 for each t  follows from i). 

iii) We first show the independence of x[^ and xf when j  ^ I.  To show this, notice that, conditioned 

on Xq and {St}, both x[^ and x[1^ are Gaussian. Then it is only needed to show they are uncorrelated, 

namely 

Ex^xf* — Ex(
t
j)Ex[l). 

If t  = 0, obviously (C.2) holds. Suppose that (C.2) holds for some t, then for t  + 1, 

(C.2) 

.«) _ 
ct+i — 

X.  (0 

if S t-1 = s[i] 

otherwise. 
(c.3) 

So 

Ex 0) _(C 
t+ixt+i 

Ex[j)x[l) 

_W)r 

,W 
if S t-1 s[i] and S t-1 f s[Z] 

i f  S t-1 = s[j] 

if St-1 = sfZ] 

= Ex^Ex^. 

(c.4) 

Thus, (C.2) holds for any t  G N. 

iii) By the independence of x^ and x[^ when j  ^ I,  £t  is a diagonal matrix. If St- I — s[j] then 

E(T%)^ = a(%_i,^)-'E(%P)" + 6(^_i,%)= 

< a-^E(ar^Y + ̂ , 

where a := min^z a(s[j], s[l]) and b := max^; |Z>(s[j], s[Z])|; or if S t-i ^ s[j] then 

E(T%)2_E(zP)^. 

-2 T 
(c.5) 

Since 0 < a < 1, for any t ,  

E(x«f < a-^f + 

for some T (dependent on t  and {,%}). Since E(x^)2  > &2 where b min.,,; |6(s[j], [i])| > 0, E(a;^)2 is 

bounded both from above and from below by some positive constants for all i;. note that the constants 

can be chosen independently on t, XQ, and {St}. Notice that := E(x\^)2 — (Ex^)2 is strictly 

positive since the randomness in the noise enters the system. Then, because |Ez^| decreases to zero 

monotonica l ly ,  i s  uni formly bounded f rom above and f rom below by posi t ive  constants  for  any XQ,  
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{S T } ,  and t .  

C.3 Proof of Proposition 14: Doubly exponential decay of error 

probability 

Fix any {%} G Qtyp- Recall that 

PET\S = QT,1 + QT, 2, (C.6) 

where QT, I satisfies 

QT.1 < Q I W) + | , (CJ) 

and QT,2 satisfies a similar inequality. Let 

* := (T +  1 )  (i -!) (,H  - $2) +  bg. j^ 

(C.8) 

Then 

Qr.i = Q , (C.9) 

Since n(J,T)/(T + 1) converges to ir[j} when T goes to infinity, we have that 5T/ (T + 1) vanishes when 

T goes to infinity. That is, 

Qr.i < Q . (C.10) 

The Chernoff bound of the Q-function (cf. [59]) says that 

Q(T) < y=^exp(-^r2) = exp -^(^ + log(27r^)) 

Then 

1 
QT, 1 < exp<j-2 ^2«U,n+o(T) ^ log(2^2n(j,r)+o(T+l))j 1 

— exp ̂ _i(a2^n(j,T)+i logQ[ao(r+1)-a-2"0,21) log(27ra2"(;,''T)+o(T+1))] 

exp ( _l(^)^(r+D+«(r+i) j 
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Similarly, 

cU) *0)^0) 
QT,  2 := Q 

0-5£r X0 &T j ^ f_I(„2x,r[3](T+l)+0(r+lA 
W~*F^ m j  i 2 < >  ) '  

and hence, 

PE%]S <2 exp ^-^(a27rM)(T+1)+o(T+1)^ . (C.ll) 

To get the (asymptotic) decay exponent of PE^S ,  noticing that for T large enough, the Chernoff 

bound becomes tight, we can derive (following the steps similar to above) that 

1 1 m 

lim ——-log(log(-—)) = lim -2  ̂  d(j, l,T) log(a(s[ j ] ,  s[l})) 
T—>oo 1 -j- 1 U1 T T—*OO *—'  f=l 

m 

= 2e 53 ̂ blPji log(a(s[j],s[Z])) 
z=i 

= 2elogâ[j]. 

It can be also shown that 

It is easily seen that 

T—>oo T+l Q2, 
-log(log(-—)) = 2eloga[j]. 

Tlim |log(log(exp(_aT) I ag>(_tr))) = min(log.,logt) (C.12) 

for a, b > 0. (That is, the "average" decay exponent of (exp(—aT)+exp(—bT)) is the smaller decay expo­

nent for exp(-ar) and exp(—bT).) Then (5.61) follows from (C.12). Finally, notice that asymptotically 

PET\S = Y^JLI PET\S' then (5.62) follows from (C.12). 

C.4 Proof of Proposition 15: Power computation 

We study the recursion for E(zp^)2. Assume St-2 = s[j] and St-1 = s[l], by (5.15), 

E(xp))2 = a(s[j],s[Z]) 2E(^l)
1)2 + 6(s[j],s[Z])2 

a(s[i], s[Z])~2E(a;t
(i)

1)2 + a(s[j], s[Z])-27(sb'])2sffl 

= a(s[j], s[Z])-2(E(a:^)
1)2 + 7(s[j])2s[Z]2), 
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where (a) follows from (5.12). Subtracting both sides by 7(5[j]), we obtain 

E{x[3 ))2  - 7(s[j]) = a(s[j], s[Z])-2 (eOe^)2 + 7(sb'])2s[Z]2 - a(s[j], s[Z])27(s[j])) 

= a(s[j], s[l))~2 (E(^)2 - 7(s[j])) , 

and thus 

E(a;t
0))2 - 7(s[j]) = (4-if (e^)2 - 7(s[j])) . (C.13) 

It follows from Lemma 4 that ~E(x^)2  — 7(s[j]) tends to zero with probability one, and hence E(x^)2 

tends to 7(s[j]) with probability one. By the Cesaro mean, the time average of E(xp'1)2, denoted 

E(x^)2, tends to 7(5[7]) with probability one. 

Since the channel input u is the multiplexing of , the power of u is the power of x[^ averaged 

over j, therefore with probability one 

E u2  = 7rHE(%W)2. (C.14) 
z=i 

So, (5.63) holds with probability one. In other words, the average channel input power is 7(5[7]) for 

any sequence {St} G Qtyp- On Çt^YP, the power of x'p is uniformly bounded by Lemma 4, and so is 

the power of u, which does not contribute to the average channel input power. Thus, the average power 

of u is as shown in (5.63), with the average taken over all {St}, XQ, noise, and time. 

C.5 Proofs for the modified cases 

C.5.1 When Al) is not assumed 

In this case, there exists some states that are assigned with zero power. Suppose s[J] is the only 

such state; for cases with more than one such states, the same idea applies. We now have a(s[j], [J]) = 1 

and a[J] = 1. Then the Jth subsystem needs some modifications, as listed below. For the encoding, 

let XQJ^ = 0 and make it known to the receiver. That is, the Jth subsystem is not used to transmit 

any message. It leads to zero signalling rate, zero transmission power, and zero probability of error 

associated with this subsystem. We then see that in this situation, our scheme behaves exactly as the 

capacity solution formula suggests. Therefore, it can be easily verified that the capacity is achieved: 

Simply note that 1) In Lemma 4, (5.34) holds for any j ^ J; 2) C = l°g a(s[i]) — log a(s[i]); 

and 3) Eu2 = 1 Tr[i]E{x^)2 = £^7^]E(a;W)2. 
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C.5.2 When A2) is not assumed 

In this case there is some i  with s[i] = 0. Then a(s[j], [i]) = 1, but â[j] > 1 still holds for each j  

with 7(s[j']) ^ 0. To see this, assume otherwise for J, a[J] = 1 but 7(5[J]) > 0. By (5.22) and (5.11), 

this would yield that, for each I = 1, • • • ,m, it must hold either i) s[l] = 0 or ii) 7t[J}pji = 0. However, 

ii) is equivalent to pji = 0 since 7r[J] > 0. Hence, for each I such that s[l] 7^ 0, pji has to be 0; i.e., the 

probability of s[J] jumping to any nonzero state is zero. In other words, s[J] must jump to s[J] with 

probability one, which according to [125] would imply that 7(s[J]) — 0, a contradiction. So a[j] > 1 

holds as long as 7(5[j]) ^ 0. 

Then we see that Lemma 4 still holds, but another ingredient is needed in its proof. In showing <f>^ 

converges to zero with probability one, note that a(St-i,St) is either less than 1 (i.e. "contractive") 

or equal to 1, and if for some {St}, does not converge to zero, each such sequence {St} must have 

finite many "contractions" and thus form a zero-probability set. Then Lemma 1 as well as the main 

results hold. 

C.6 Proof for the case of AWGN i.i.d. fading with infinite state 

Denote the density of the random variable A := VPS2  +1 as PA, where S ~ ps- Pick any e > 0 

small enough. Uniformly partition the unit interval [—5,5] into [Mx\ sub-intervals, where 

M T  := exp[(T + 1)(1 - e)EA~PA log A], (C.15) 

Then the asymptotic signalling rate is 

* -
(T  + 1)(1 — 6)EA~Pa log A 

tSI r + 1 

1 
' 2  

(1 ^Ciidyinf ) 

(l-e)Ex^logA 

(l-e)E^llog(l + ̂ P) 

where •— Following the idea in the finite state-space case, to show the reliable commu­

nication with rate R, it suffices to show that the associated control system is stabilized in the sense 

of bounded and vanishing first moment Ext and bounded second moment E(xt — Ext)2, for every 

typical sequence. However, the stability of the control system can be easily proven; here for brevity we 

only show that EXt is bounded and vanishing. To this aim, note that 

xt = A(ST-I) 1XT-I — b(ST-i)NT-i- (C.17) 
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The first moment evolves according to 

Eajj- = A(ST—I) ^Ext—I (C.18) 

when conditioned on the channel state sequence and initial condition, and hence 

T 

EX T  = (C.19) 
j=o 

It is then clear that EXT is bounded for any channel state sequence and vanishes for any typical channel 

state sequences. Finally, the power computation can be done as before. Thus we prove the optimality 

of the proposed scheme. 

C.7 Multi-step delay case 

We now briefly present the capacity-achieving feedback communication scheme for the general multi-

step delay case, that is, there are d > 1 steps of delay between the receiver sending a signal and the 

transmitter receiving it. We also outline the main idea for the proof. 

C.7.1 Communication setup 

The communication setup to be used for information transmission analysis is shown in Fig. C.l. 

Let us assume that 

(C.20) 

is the message to be encoded at the transmitter and to be recovered at the receiver, where 

for n = 0,1, • • •, d — 1. We store Zq in the z~dIm  block of the transmitter according to Fig. C.2, that 

is, Zq is the initial state of the z~dIm block of the transmitter. The z~dIm block at the receiver is 

initialized by zeros. 

The signal —xn>t+d is the estimate of xn at time t, for n = 0,1, • • • ,d — 1. Note that the channel 

state St-d. is used at the transmitter side to generate the channel input ut, and used at the receiver 

side at time (t — d), which is consistent with the assumption of ^-step-delayed DTRCSI. The operation 

of the communication setup starting from t = 0 is similar to the d — 1 case (details skipped). We 

use A(Sj) := Im, c'(Sj) := [1,0, • • • ,0]', and Vj := 0, if j < 0. We may also draw the extended 

communication setup where the feedback signal has bounded power, and it can be verified that the 

extended communication setup is an extension of the SK scheme. For this proposed scheme, the notions 
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transmitter H 

Nt 

ffi-

~dIm 

cT(St_d) 

zq 

*e- s t  L(5t) 

%o,t+d 
TT^) 

zl,i+d 
n^+i) 

t/i  
n^(Sjd+d-i) j=o 

2-d—l,t+d 

<F(a.) 
^t+d 

z"d/m 

A(%) 

Figure C.l The communication setup for multi-step delay case. 

of the transmission rate, error probability, etc., can be generalized from the d = 1 case easily and are 

skipped here. 

C.7.2 Control setup 

Letting 

x t : = x t + x t ,  (C.22) 

we obtain the control setup, see Fig. C.3. The control setup is useful for stability analysis and power 

computation as before, and it operates in a fashion that there are d subsystems with no interaction 

between them, which allows us to achieve the capacity by applying the techniques of the d = 1 case. 

C.7.3 Choice of parameters 

Let j(-) be the capacity-achieving power allocation that maps the channel state S t  to the channel 

input power j(St) and such that the average channel input power constraint holds. 
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the z dIm block 

Figure C.2 Initialization of the transmitter memory. 

H 
V t  

L  { S t .  

Figure C.3 The control setup for the multi-step delay case. 

Supposing at time (t — d) the channel state S t-d = s[i] for some i ,  we define 

A(S t) := A(S t-d,S t) = diag(o(St)) G 

= [0, -,0,6(%),0, -,oy 6 

= [0, • • •, 0, c(S t-d),Q, • • •, 0]' G 

where a(S t) := a(S t-d, S t) G Em is such that its i-th element is 

(C.23) 

a(S t) := a(S t-d,S t) := V7{S t-d)(S t)2  + 1 (C.24) 
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and all other elements are 1; b(S t),  the i-th element of L(S t),  is 

b(S t) •= b(S t-d,S t) l{S t-d)St _ 1 
— a(St-d, St)' ,  (C.25) 

VV {St-d.)(St)2  + 1 &(St—d,St) 

and c(S t-d), the i-th element of c(S t~d), is 

c(St-d) := l- (C.26) 

Whenever S t ,  t  < 0, is encountered, it is treated as s[l]. 

C.7.4 Achieving the capacity 

We sketch the main idea of the proof for the cZ-step delay case. The proposed scheme can be 

viewed as a multiplexing scheme that multiplexes d feedback communication systems, each has only 

one feedback delay. In more detail, it holds that, both the communication setup and the control setup 

can be equivalently treated as d separate subsystems, where each subsystem is activated only once in 

every d steps and remains its previous states in the other (d — 1) steps, and at each time, only one 

subsystem is activated. Therefore, we can view each subsystem has only "one cumulative delay" of 

length d, during which this subsystem updates only once; note this is different from d delays during 

which the subsystem may update d times. Since the n-th subsystem outputs an updated estimate 

xTht every d steps, the achievable rate for such a subsystem is log(|â|)/d, which follows that the total 

achievable rate is still log(|5|). For the power computation, we notice that each subsystem uses power 

V but  they occupy dis jo in t  t ime s lo ts ,  and hence  the  to ta l  average  power  i s  V. 
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APPENDIX D. PROOFS OF RESULTS IN CHAPTER 6 

D.l Proof of Theorem 4: Optimality of the coding scheme for AWGN 

channels 

In this section, we prove the optimality of the proposed coding scheme for the AWGN WDP-

channel. To establish lossless interference cancelation, we need to show that, both the decoded message 

is therefore sufficient to prove that both the decoder state ZQ,T and the channel input Ut are decoupled 

(or asymptotically decoupled) from the interference sequence. Then the theorem would follow from 

standard results of feedback communication over an AWGN channel without interference. 

We derive the expressions for ut and xo,t- We can express the encoder state in terms of the initial 

condition, interference, and channel outputs as 

Wt and the (asymptotic) average channel input power are not affected by the interference sequence. It 

t-i 
s, = o*(iy + W]*) + a' a-J-% - %). (D.l) 

Hence 
t-i t-i 

(D.2) 

On the other hand, noticing that yt = ut + £t + Nt, the encoder state is also 

Xt — axt-i + £(£t-i — Ut-1 — £t~i — Nt—i) 

= (a - Lc)xt-1 - LNt-1 

—• Oj Xt—i LNt—j (D.3) 
t-i 

= a-\W + WM) - a~t+1+jLNj. 
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Then the decoder state is 

t - i  

xo,t~i= 5 3 ° 1  l Lyj 
3=0 

t-1 

=  W + W M -  a-t®t + 53 (D.4) 
3=0 

t-i t-i 

= (1 - a-2t)(^+lfM) + a-2 t^2a j + 1LNj + 
j=o j=o 

Therefore, by (6.7), we have 

X 0,T  =  (1 -a-2 T~2)W+ <T2 T-2Y J A J + 1 LN J ,  (D.5) 
3=0 

and thus the interference does not affect the decoder state at time T and the decoded message WT-

Now note that 
t—1 

Ut = cx t= a - \W + WM) -^2a~ T + 1 + J LNJ.  (D.6) 
j=o 

That is, the presence of interference incurs an extra power overhead of a~2tW^, which vanishes expo­

nentially and is negligible, since the power due to the term X^=o a~t+1+iLNj approaches a nonzero 

constant and the coding length (T + 1) is sufficiently large. In summary, the interference does not 

affect either the decoded message or the asymptotic channel input power. This indeed leads to lossless 

interference canceling. 

D.2 Proof of Theorem 5: Optimality of the coding scheme for Gaussian 

channels 

In this section, we prove the optimality of the proposed coding scheme for general Gaussian WDP-

channel. Similar to the AWGN case, the interference £ does not affect xt and hence the channel input 

ut asymptotically. In addition, the term in io,T associated with £ is known to the encoder before the 

transmission, and therefore the encoder can offset x0 to completely cancel the term associated with £. 

To facilitate our analysis, we rewrite the communication system as a control system and then establish 

the above claims. 

We first define for the coding scheme shown in Fig. 6.5 that 

St '•— Sf, St 

X: 
Xt 

St  

(D.7) 
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Then the dynamics of the encoder becomes 

X; — Ac;Xt_ i — ZriVt_i — AXj_i — Let—i 

et-i = CXj—i + iVt—1 (d.8) 

dx 

where AC; := A — £C. Note that (D.8) is a control system (as indicated in Fig. 6.5), and is affected by 

the interference only through its initial condition XQ. We now have 

t - i  
x, = a^xo - g (d.9) 

j=o 

By ut = CXT, any L stabilizing the control system ensures that, the channel input power is asymptot­

ically equal to A^^^^I/'A^3-1', independent of the interference. We can also verify that the 

term in  XQ ,T genera ted  by x 0  i s  asymptot ica l ly  XQ-

In addition, the interference would generate an extra term in x0tT given by 

if no compensation to the initial condition XQ is used. Then we offset XÇ> by this amount and therefore we 

achieve (asymptotic) lossless cancelation of the interference. The proof for the coding scheme achieving 

CQO ("P) follows from the reasoning in Chapter 4. 

T T j-1 
(D.IO) 
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